Given a non-negative integer N
, find the largest number that is less than or equal to N
with monotone increasing digits.
(Recall that an integer has monotone increasing digits if and only if each pair of adjacent digits x
and y
satisfy x <= y
.)
Example 1:
Input: N = 10 Output: 9
Example 2:
Input: N = 1234 Output: 1234
Example 3:
Input: N = 332 Output: 299
Note: N
is an integer in the range [0, 10^9]
.
Runtime: 16 ms, faster than 87.76% of Java online submissions for Monotone Increasing Digits.
class Solution { public static int monotoneIncreasingDigits(int N) { char[] Nstr = String.valueOf(N).toCharArray(); int cnt = 0; boolean firstmeet = true; while(cnt < Nstr.length-1){ if(Nstr[cnt] > Nstr[cnt+1]){ if(firstmeet) { for(int i=cnt+1; i<Nstr.length; i++) Nstr[i] = '9'; Nstr[cnt] = (char)((int)Nstr[cnt] - 1); firstmeet = false; }else{ Nstr[cnt+1] = '9'; } if(cnt > 0) { cnt-=2; firstmeet = true; } } cnt++; } return Integer.parseInt(String.valueOf(Nstr)); } }