zoukankan      html  css  js  c++  java
  • LC 802. Find Eventual Safe States

    In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.

    Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node.  More specifically, there exists a natural number K so that for any choice of where to walk, we must have stopped at a terminal node in less than K steps.

    Which nodes are eventually safe?  Return them as an array in sorted order.

    The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph.  The graph is given in the following form: graph[i] is a list of labels jsuch that (i, j) is a directed edge of the graph.

    Example:
    Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
    Output: [2,4,5,6]
    Here is a diagram of the above graph.
    

    Runtime: 268 ms, faster than 12.50% of C++ online submissions for Find Eventual Safe States.

    slow

    class Solution {
    public:
      vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> indegree(graph.size(),0);
        vector<int> outdegree(graph.size(), 0);
        unordered_map<int,vector<int>> parent;
        for(int i=0; i<graph.size(); i++){
          for(int j=0; j<graph[i].size(); j++){
            indegree[graph[i][j]]++;
            outdegree[i]++;
            parent[graph[i][j]].push_back(i);
          }
        }
        queue<int> q;
        unordered_map<int,bool> used;
        for(int i=0; i<graph.size(); i++) used[i] = false;
        while(true) {
          for(int i=0; i<outdegree.size(); i++) {
            if(outdegree[i] == 0 && !used[i]) {
              q.push(i);
            }
          }
          if(q.empty()) break;
          while(!q.empty()) {
            int tmp = q.front(); q.pop();
            used[tmp] = true;
            for(int x : parent[tmp]) {
              outdegree[x]--;
            }
          }
        }
        vector<int> ret;
        for(int i=0; i<outdegree.size(); i++){
          if(outdegree[i] == 0) ret.push_back(i);
        }
        return ret;
      }
    };

    Runtime: 140 ms, faster than 100.00% of C++ online submissions for Find Eventual Safe States.

    class Solution {
    
    public:
      vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> color(graph.size(),0);
        vector<int> ret;
        for(int i=0; i<graph.size(); i++){
          if(dfs(graph, i, color)) ret.push_back(i);
        }
        return ret;
      }
    
      bool dfs(vector<vector<int>>& graph, int s, vector<int>& color) {
        if(color[s] > 0) return color[s] == 2;
        color[s] = 1;
        for(int& x : graph[s]) {
          if(!dfs(graph, x, color)) return false;
        }
        color[s] = 2;
        return true;
      }
    };
  • 相关阅读:
    【Linux编程】socket编程
    虚函数相关问题分析
    Android使用ShowcaseView加入半透明操作提示图片的方法
    好的Unix工具的九大启发
    Android ADB工具-截图和录制视频(五)
    (三)ng-app的使用困惑和angularJS框架的自己主动载入
    spark一些入门资料
    jQuery -&gt; 怎样【先创建、再改动、后加入】 DOM元素
    centos平台openstack spice配置
    openstack 启用spice
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10285718.html
Copyright © 2011-2022 走看看