zoukankan      html  css  js  c++  java
  • LC 802. Find Eventual Safe States

    In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.

    Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node.  More specifically, there exists a natural number K so that for any choice of where to walk, we must have stopped at a terminal node in less than K steps.

    Which nodes are eventually safe?  Return them as an array in sorted order.

    The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph.  The graph is given in the following form: graph[i] is a list of labels jsuch that (i, j) is a directed edge of the graph.

    Example:
    Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
    Output: [2,4,5,6]
    Here is a diagram of the above graph.
    

    Runtime: 268 ms, faster than 12.50% of C++ online submissions for Find Eventual Safe States.

    slow

    class Solution {
    public:
      vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> indegree(graph.size(),0);
        vector<int> outdegree(graph.size(), 0);
        unordered_map<int,vector<int>> parent;
        for(int i=0; i<graph.size(); i++){
          for(int j=0; j<graph[i].size(); j++){
            indegree[graph[i][j]]++;
            outdegree[i]++;
            parent[graph[i][j]].push_back(i);
          }
        }
        queue<int> q;
        unordered_map<int,bool> used;
        for(int i=0; i<graph.size(); i++) used[i] = false;
        while(true) {
          for(int i=0; i<outdegree.size(); i++) {
            if(outdegree[i] == 0 && !used[i]) {
              q.push(i);
            }
          }
          if(q.empty()) break;
          while(!q.empty()) {
            int tmp = q.front(); q.pop();
            used[tmp] = true;
            for(int x : parent[tmp]) {
              outdegree[x]--;
            }
          }
        }
        vector<int> ret;
        for(int i=0; i<outdegree.size(); i++){
          if(outdegree[i] == 0) ret.push_back(i);
        }
        return ret;
      }
    };

    Runtime: 140 ms, faster than 100.00% of C++ online submissions for Find Eventual Safe States.

    class Solution {
    
    public:
      vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> color(graph.size(),0);
        vector<int> ret;
        for(int i=0; i<graph.size(); i++){
          if(dfs(graph, i, color)) ret.push_back(i);
        }
        return ret;
      }
    
      bool dfs(vector<vector<int>>& graph, int s, vector<int>& color) {
        if(color[s] > 0) return color[s] == 2;
        color[s] = 1;
        for(int& x : graph[s]) {
          if(!dfs(graph, x, color)) return false;
        }
        color[s] = 2;
        return true;
      }
    };
  • 相关阅读:
    推荐网址:Response.WriteFile Cannot Download a Large File
    为什么是 My?
    Fox开发杂谈
    DCOM配置为匿名访问
    连接到运行 Windows 98 的计算机
    OO面向对象以后是什么
    Com+的未来是什么?
    fox 表单和类库的加密及修复
    来自 COM 经验的八个教训
    VFP的加密问题
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10285718.html
Copyright © 2011-2022 走看看