zoukankan      html  css  js  c++  java
  • python 日志 logging模块

    1.基本使用

    转载自:https://www.cnblogs.com/wf-linux/archive/2018/08/01/9400354.html

    配置logging基本的设置,然后在控制台输出日志

    import logging
    logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logger = logging.getLogger(__name__)
     
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    运行时,控制台输出,

    2021-09-01 18:53:45,675 - __main__ - INFO - Start print log
    2021-09-01 18:53:45,718 - __main__ - WARNING - Something maybe fail.
    2021-09-01 18:53:45,719 - __main__ - INFO - Finish
    

    logging中可以选择很多消息级别,如debug、info、warning、error以及critical。通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。
    例如,我们将logger的级别改为DEBUG,再观察一下输出结果,

    logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    

    控制台输出,可以发现,输出了debug的信息。

    2021-09-01 18:54:46,987 - __main__ - INFO - Start print log
    2021-09-01 18:54:47,034 - __main__ - DEBUG - Do something
    2021-09-01 18:54:47,035 - __main__ - WARNING - Something maybe fail
    2021-09-01 18:54:47,036 - __main__ - INFO - Finish
    

    logging.basicConfig函数各参数:

    • filename:指定日志文件名;
    • filemode:和file函数意义相同,指定日志文件的打开模式,'w'或者'a';
    • format:指定输出的格式和内容,format可以输出很多有用的信息,
    参数:作用
     
    %(levelno)s:打印日志级别的数值
    %(levelname)s:打印日志级别的名称
    %(pathname)s:打印当前执行程序的路径,其实就是sys.argv[0]
    %(filename)s:打印当前执行程序名
    %(funcName)s:打印日志的当前函数
    %(lineno)d:打印日志的当前行号
    %(asctime)s:打印日志的时间
    %(thread)d:打印线程ID
    %(threadName)s:打印线程名称
    %(process)d:打印进程ID
    %(message)s:打印日志信息
    
    • datefmt:指定时间格式,同time.strftime();
    • level:设置日志级别,默认为logging.WARNNING;
    • stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略;

    2.将日志写入到文件

    2.1将日志写入到文件

    设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中,

    import logging
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    logger.addHandler(handler)
     
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    log.txt中日志数据为,

    2021-09-02 10:06:30,343 - __main__ - INFO - Start print log
    2021-09-02 10:06:30,349 - __main__ - WARNING - Something maybe fail
    2021-09-02 10:06:30,349 - __main__ - INFO - Finish
    

    2.2 将日志同时输出到屏幕和日志文件

    logger中添加StreamHandler,可以将日志输出到屏幕上,

    import logging
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    
    logger.addHandler(handler)
    logger.addHandler(console)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail")
    logger.info("Finish")
    

    可以在log.txt文件和控制台中看到,

    2021-09-02 10:11:58,112 - __main__ - INFO - Start print log
    2021-09-02 10:11:58,161 - __main__ - WARNING - Something maybe fail
    2021-09-02 10:11:58,161 - __main__ - INFO - Finish
    

    可以发现,logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种,

    handler名称:位置;作用
     
    StreamHandler:logging.StreamHandler;日志输出到流,可以是sys.stderr,sys.stdout或者文件
    FileHandler:logging.FileHandler;日志输出到文件
    BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滚方式
    RotatingHandler:logging.handlers.RotatingHandler;日志回滚方式,支持日志文件最大数量和日志文件回滚
    TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚方式,在一定时间区域内回滚日志文件
    SocketHandler:logging.handlers.SocketHandler;远程输出日志到TCP/IP sockets
    DatagramHandler:logging.handlers.DatagramHandler;远程输出日志到UDP sockets
    SMTPHandler:logging.handlers.SMTPHandler;远程输出日志到邮件地址
    SysLogHandler:logging.handlers.SysLogHandler;日志输出到syslog
    NTEventLogHandler:logging.handlers.NTEventLogHandler;远程输出日志到Windows NT/2000/XP的事件日志
    MemoryHandler:logging.handlers.MemoryHandler;日志输出到内存中的指定buffer
    HTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"远程输出到HTTP服务器
    

    2.3 日志回滚

    使用RotatingFileHandler,可以实现日志回滚,

    # 日志回滚
    import logging
    from logging.handlers import RotatingFileHandler
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    
    # 定义一个RotatingFileHandler,最多备份3个日志,每个日志最大为1k
    rHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)
    rHandler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    rHandler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    console.setFormatter(formatter)
    
    logger.addHandler(rHandler)
    logger.addHandler(console)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    可以在工程目录中看到备份的日志文件:

    2021/09/02  19:36               732 log.txt
    2021/09/02  19:36               967 log.txt.1
    2021/09/02  19:36               985 log.txt.2
    2021/09/02  19:36               976 log.txt.3
    

    2.4设置消息的等级

    可以设置不同的日志等级,用于控制日志的输出。

    日志等级:使用范围
    FATAL:致命错误
    CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用
    ERROR:发生错误时,如IO操作失败或者连接问题
    WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误
    INFO:处理请求或者状态变化等日常事务
    DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态
    

    2.5捕获traceback

    Python中的traceback模块被用于跟踪异常返回信息,可以在logging中记录下traceback。

    import logging
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    
    logger.addHandler(handler)
    logger.addHandler(console)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    
    try:
        open("sklearn.txt","rb")
    except (SystemExit,KeyboardInterrupt):
        raise
    except Exception:
        logger.error("Failed to opensklearn.txt from logger.error",exc_info = True)
    logger.info("Finish")
    

    控制台和日志文件log.txt中输出

    Start print log
    Something maybe fail.
    Failed to opensklearn.txt from logger.error
    Traceback (most recent call last):
      File "c:UsersuserDesktopgolearnlogging.py", line 114, in <module>
        open("sklearn.txt","rb")
    FileNotFoundError: [Errno 2] No such file or directory: 'sklearn.txt'
    Finish
    

    也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),将

    logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
    

    替换为,

    logger.exception("Failed to open sklearn.txt from logger.exception")
    

    控制台和日志文件log.txt中输出

    Start print log
    Something maybe fail.
    Failed to open sklearn.txt from logger.exception
    Traceback (most recent call last):
      File "c:UsersuserDesktopgolearnlogging.py", line 114, in <module>
        open("sklearn.txt","rb")
    FileNotFoundError: [Errno 2] No such file or directory: 'sklearn.txt'
    Finish
    

    2.6多模块使用logging

    主模块mainModule.py

    import logging
    import subModule
    
    logger = logging.getLogger("mainModule")
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    console.setFormatter(formatter)
    
    logger.addHandler(handler)
    logger.addHandler(console)
    
    logger.info("createing an instance of subModule.subModuleClass")
    a = subModule.SubModuleClass()
    logger.info("calling subModule.subModuleClass.doSomething")
    a.doSomething()
    logger.info("done with subModule.subModuleClass.doSomething")
    logger.info("calling subModule.some_function")
    subModule.some_function()
    logger.info("done with subModule.some_function")
    

    子模块subModule.py,

    import logging
    
    module_logger = logging.getLogger("mainModule.sub")
    class SubModuleClass(object):
        def __init__(self):
            self.logger = logging.getLogger("mainModule.sub.module")
            self.logger.info("creating an instance in SubModuleClass")
    
        def doSomething(self):
            self.logger.info("do something in SubModule")
            a = []
            a.append(1)
            self.logger.debug("list a = " + str(a))
            self.logger.info("finish something in SubModuleClass")
    
    def some_function():
        module_logger.info("call function some_function")
    

    执行之后,在控制和日志文件log.txt中输出,

    2021-09-06 10:13:59,036 - mainModule - INFO - createing an instance of subModule.subModuleClass
    2021-09-06 10:13:59,089 - mainModule.sub.module - INFO - creating an instance in SubModuleClass
    2021-09-06 10:13:59,089 - mainModule - INFO - calling subModule.subModuleClass.doSomething
    2021-09-06 10:13:59,090 - mainModule.sub.module - INFO - do something in SubModule
    2021-09-06 10:13:59,091 - mainModule.sub.module - INFO - finish something in SubModuleClass
    2021-09-06 10:13:59,091 - mainModule - INFO - done with subModule.subModuleClass.doSomething
    2021-09-06 10:13:59,091 - mainModule - INFO - calling subModule.some_function
    2021-09-06 10:13:59,092 - mainModule.sub - INFO - call function some_function
    2021-09-06 10:13:59,107 - mainModule - INFO - done with subModule.some_function
    

    首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。

    实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。

    3.通过json和yaml文件配置logging模块

    尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。

    3.1通过JSON文件配置

    JSON配置文件test.json

    {
        "version":1,
        "disable_existing_loggers":false,
        "formatters":{
            "simple":{
                "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
            }
        },
        "handlers":{
            "console":{
                "class":"logging.StreamHandler",
                "level":"DEBUG",
                "formatter":"simple",
                "stream":"ext://sys.stdout"
            },
            "info_file_handler":{
                "class":"logging.handlers.RotatingFileHandler",
                "level":"INFO",
                "formatter":"simple",
                "filename":"info.log",
                "maxBytes":"10485760",
                "backupCount":20,
                "encoding":"utf8"
            },
            "error_file_handler":{
                "class":"logging.handlers.RotatingFileHandler",
                "level":"ERROR",
                "formatter":"simple",
                "filename":"errors.log",
                "maxBytes":10485760,
                "backupCount":20,
                "encoding":"utf8"
            }
        },
        "loggers":{
            "my_module":{
                "level":"ERROR",
                "handlers":["info_file_handler"],
                "propagate":"no"
            }
        },
        "root":{
            "level":"INFO",
            "handlers":["console","info_file_handler","error_file_handler"]
        }
    }
    

    通过JSON加载配置文件,然后通过logging.dictConfig配置logging,

    import json
    import logging.config
    import os
    
    def setup_logging(default_path = "test.json",default_level = logging.INFO,env_key="LOG_CFG"):
        path = default_path
        value = os.getenv(env_key,None)
        if value:
            path = value
        if os.path.exists(path):
            with open(path,"r") as f:
                config = json.load(f)
                logging.config.dictConfig(config)
        else:
            logging.basicConfig(level = default_level)
    
    def func():
        logging.info("start func")
        logging.info("exec func")
        logging.info("end func")
    
    if __name__ == "__main__":
        setup_logging(default_path="test.json")
        func()
    

    3.2通过YAML文件配置

    通过YAML文件进行配置,比json看起来更加简洁明了

    version: 1
    disable_existing_loggers: False
    formatters:
            simple:
                format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    handlers:
        console:
                class: logging.StreamHandler
                level: DEBUG
                formatter: simple
                stream: ext://sys.stdout
        info_file_handler:
                class: logging.handlers.RotatingFileHandler
                level: INFO
                formatter: simple
                filename: info.log
                maxBytes: 10485760
                backupCount: 20
                encoding: utf8
        error_file_handler:
                class: logging.handlers.RotatingFileHandler
                level: ERROR
                formatter: simple
                filename: errors.log
                maxBytes: 10485760
                backupCount: 20
                encoding: utf8
    loggers:
        my_module:
                level: ERROR
                handlers: [info_file_handler]
                propagate: no
    root:
        level: INFO
        handlers: [console,info_file_handler,error_file_handler]
    

    通过yaml加载配置文件,然后通过logging.dictConfig配置logging,

    import yaml
    import logging.config
    import os
    
    def setup_logging(default_path = "test.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):
        path = default_path
        value = os.getenv(env_key,None)
        if value:
            path = value
        if os.path.exists(path):
            with open(path,"r") as f:
                config = yaml.load(f)
                logging.config.dictConfig(config)
        else:
            logging.basicConfig(level = default_level)
    
    def func():
        logging.info("start func")
        logging.info("exec func")
        logging.info("end func")
    
    if __name__ == "__main__":
        setup_logging(default_path = "test.yaml")
        func()
    
    
  • 相关阅读:
    ElementUI table标签展开行
    ElementUI-textarea文本域高度自适应设置的方法
    使用elementUI的el-form组件进行查询时,当输入框仅有一项时,回车自动提交表单,浏览器会刷新页面
    tinymce图片上传
    vue富文本编辑器tinymce
    vue引入assets下图片路径找不到问题
    phpstudy 新项目配置
    Git的使用
    laravel 队列的使用
    laravel中redis用法
  • 原文地址:https://www.cnblogs.com/even160941/p/15219628.html
Copyright © 2011-2022 走看看