zoukankan      html  css  js  c++  java
  • 【HDU 4819】Mosaic

    【题目链接】

               点击打开链接

    【算法】

              二维线段树(树套树)

    【代码】

                

    #include<bits/stdc++.h>
    using namespace std;
    #define MAXN 800
    
    int i,q,n,xa,xb,ya,yb,l,tmp,T,Max,Min,x,y;
    
    struct info { int Max,Min; } Tree[MAXN*3][MAXN*3];
    
    template <typename T> inline void read(T &x) {
        int f = 1; x = 0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
        for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
            x *= f;    
    }
    template <typename T> inline void write(T x) {
        if (x < 0) { putchar('-'); x = -x; }
        if (x > 9) write(x/10);
        putchar(x%10+'0');    
    }
    template <typename T> inline void writeln(T x) {
        write(x);
        puts("");    
    }
    
    inline void push_up(int D,int index) {
        Tree[D][index].Max = max(Tree[D][index<<1].Max,Tree[D][index<<1|1].Max);
        Tree[D][index].Min = min(Tree[D][index<<1].Min,Tree[D][index<<1|1].Min);    
    }
    
    inline void build_y(int D,int index,int l,int r,int opt) {
        int mid,val;
        if (l == r) {
            if (opt == 1) {
                read(val);
                Tree[D][index].Max = Tree[D][index].Min = val;
            } else {
                Tree[D][index].Max = max(Tree[D<<1][index].Max,Tree[D<<1|1][index].Max);
                Tree[D][index].Min = min(Tree[D<<1][index].Min,Tree[D<<1|1][index].Min);
            }
            return;
        }    
        mid = (l + r) >> 1;
        build_y(D,index<<1,l,mid,opt);
        build_y(D,index<<1|1,mid+1,r,opt);
        push_up(D,index);
    }
    
    inline void build_x(int index,int l,int r) {
        int mid;
        if (l == r) {
            build_y(index,1,1,n,1);
            return;
        }
        mid = (l + r) >> 1;
        build_x(index<<1,l,mid);
        build_x(index<<1|1,mid+1,r);
        build_y(index,1,1,n,2);
    }
    
    inline void modify_y(int D,int index,int l,int r,int val,int opt) {
        int mid;
        if (l == r) {
            if (opt == 1) Tree[D][index].Max = Tree[D][index].Min = val;
            else {
                Tree[D][index].Max = max(Tree[D<<1][index].Max,Tree[D<<1|1][index].Max);
                Tree[D][index].Min = min(Tree[D<<1][index].Min,Tree[D<<1|1][index].Min);
            }
            return;
        }    
        mid = (l + r) >> 1;
        if (mid >= y) modify_y(D,index<<1,l,mid,val,opt);
        else modify_y(D,index<<1|1,mid+1,r,val,opt);
        push_up(D,index);
    }
    
    inline void modify_x(int index,int l,int r,int val) {
        int mid;
        if (l == r) {
            modify_y(index,1,1,n,val,1);
            return;
        }
        mid = (l + r) >> 1;
        if (mid >= x) modify_x(index<<1,l,mid,val);
        else modify_x(index<<1|1,mid+1,r,val);
        modify_y(index,1,1,n,val,2);
    }
    
    inline int query_min_y(int D,int index,int l,int r,int x,int y) {
        int mid;
        if (l == x && r == y) return Tree[D][index].Min;
        mid = (l + r) >> 1;
        if (mid >= y) return query_min_y(D,index<<1,l,mid,x,y);
        else if (mid + 1 <= x) return query_min_y(D,index<<1|1,mid+1,r,x,y);
        else return min(query_min_y(D,index<<1,l,mid,x,mid),query_min_y(D,index<<1|1,mid+1,r,mid+1,y));
    }
    
    inline int query_min_x(int index,int l,int r,int x,int y) {
        int mid;
        if (l == x && r == y) return query_min_y(index,1,1,n,ya,yb);
        mid = (l + r) >> 1;
        if (mid >= y) return query_min_x(index<<1,l,mid,x,y);
        else if (mid + 1 <= x) return query_min_x(index<<1|1,mid+1,r,x,y);
        else return min(query_min_x(index<<1,l,mid,x,mid),query_min_x(index<<1|1,mid+1,r,mid+1,y)); 
    }
    
    inline int query_max_y(int D,int index,int l,int r,int x,int y) {
        int mid;
        if (l == x && r == y) return Tree[D][index].Max;
        mid = (l + r) >> 1;
        if (mid >= y) return query_max_y(D,index<<1,l,mid,x,y);
        else if (mid + 1 <= x) return query_max_y(D,index<<1|1,mid+1,r,x,y);
        else return max(query_max_y(D,index<<1,l,mid,x,mid),query_max_y(D,index<<1|1,mid+1,r,mid+1,y));
    }
    
    inline int query_max_x(int index,int l,int r,int x,int y) {
        int mid;
        if (l == x && r == y) return query_max_y(index,1,1,n,ya,yb);
        mid = (l + r) >> 1;
        if (mid >= y) return query_max_x(index<<1,l,mid,x,y);
        else if (mid + 1 <= x) return query_max_x(index<<1|1,mid+1,r,x,y);
        else return max(query_max_x(index<<1,l,mid,x,mid),query_max_x(index<<1|1,mid+1,r,mid+1,y)); 
    }
    
    int main() {
        
        read(T);
        for (i = 1; i <= T; i++) {
            read(n);
            build_x(1,1,n);
            read(q);
            cout<<"Case #"<< i << ':' << endl;
            while (q--) {
                read(x); read(y); read(l);
                xa = max(1,x-l/2);
                xb = min(n,x+l/2);
                ya = max(1,y-l/2);
                yb = min(n,y+l/2);
                Max = query_max_x(1,1,n,xa,xb);
                Min = query_min_x(1,1,n,xa,xb);
                tmp = (Max + Min) / 2;
                writeln(tmp);
                modify_x(1,1,n,tmp);
            }        
        }
        return 0;
    }
  • 相关阅读:
    设计模-设计原则-开闭原则
    使用export/import导出和导入docker容器
    Docker学习笔记(二)
    redis-cli的一些有趣也很有用的功能
    Redis命令总结
    使用domain模块捕获异步回调中的异常
    大话程序猿眼里的高并发
    使用pm2躺着实现负载均衡
    Request —— 让 Node.js http请求变得超简单
    避免uncaughtException错误引起node.js进程崩溃
  • 原文地址:https://www.cnblogs.com/evenbao/p/9196382.html
Copyright © 2011-2022 走看看