zoukankan      html  css  js  c++  java
  • [POJ 3694] Network

    [题目链接]

             http://poj.org/problem?id=3694

    [算法]

             首先,我们用tarjan算法求出所有的边双联通分量,然后,将这张图缩点

             如果添加的边(x,y)在同一个双联通分量中,答案不变,否则,给belong[x]-belong[y]的路径上的边作标记,可以用并查集加速这个过程

    [代码]

             

    #include <algorithm>  
    #include <bitset>  
    #include <cctype>  
    #include <cerrno>  
    #include <clocale>  
    #include <cmath>  
    #include <complex>  
    #include <cstdio>  
    #include <cstdlib>  
    #include <cstring>  
    #include <ctime>  
    #include <deque>  
    #include <exception>  
    #include <fstream>  
    #include <functional>  
    #include <limits>  
    #include <list>  
    #include <map>  
    #include <iomanip>  
    #include <ios>  
    #include <iosfwd>  
    #include <iostream>  
    #include <istream>  
    #include <ostream>  
    #include <queue>  
    #include <set>  
    #include <sstream>  
    #include <stdexcept>  
    #include <streambuf>  
    #include <string>  
    #include <utility>  
    #include <vector>  
    #include <cwchar>  
    #include <cwctype>  
    #include <stack>  
    #include <limits.h>
    using namespace std;
    #define MAXN 100010
    #define MAXM 200010
    #define MAXLOG 20
    
    struct edge
    {
            int to,nxt;
    } e[MAXM << 2],ec[MAXM << 2];
    int i,j,n,m,ans,tot,ctot,cnt,u,v,timer,Lca,x,y,q,TC;
    int head[MAXN],chead[MAXN],low[MAXN],dfn[MAXN],belong[MAXN],fa[MAXN],depth[MAXN];
    int anc[MAXN][MAXLOG];
    bool is_bridge[MAXM << 1],visited[MAXN];
    
    inline void addedge(int u,int v)
    {
            tot++;
            e[tot] = (edge){v,head[u]};
            head[u] = tot;
    }
    inline void addcedge(int u,int v)
    {
            ctot++;
            ec[ctot] = (edge){v,chead[u]};
            chead[u] = ctot;
    } 
    inline void tarjan(int u,int t)
    {
            int i,v;
            dfn[u] = low[u] = ++timer;
            visited[u] = true;
            for (i = head[u]; i; i = e[i].nxt)
            {
                    v = e[i].to;
                    if (!visited[v])
                    {
                            tarjan(v,i);
                            if (low[v] > dfn[u]) is_bridge[i] = is_bridge[i ^ 1] = true;
                            low[u] = min(low[u],low[v]);
                    } else if (i != (t ^ 1)) low[u] = min(low[u],dfn[v]);
            }
    }
    inline void dfs(int u)
    {
            int i,v;
            belong[u] = cnt;
            for (i = head[u]; i; i = e[i].nxt)
            {
                    v = e[i].to;
                    if (belong[v] || is_bridge[i]) continue;
                    dfs(v);
            }
    }
    inline void lca_init()
    {
            int i,j,u,v;
            queue< int > q;
            while (!q.empty()) q.pop();
            q.push(1);
            depth[1] = 1;
            while (!q.empty())
            {
                    u = q.front();
                    q.pop();
                    for (i = chead[u]; i; i = ec[i].nxt)
                    {
                            v = ec[i].to;
                            if (depth[v]) continue;
                            depth[v] = depth[u] + 1;
                            anc[v][0] = u;
                            for (j = 1; j < MAXLOG; j++)
                                    anc[v][j] = anc[anc[v][j - 1]][j - 1];
                            q.push(v);
                    }
            }
    }
    inline int lca(int x,int y)
    {
            int i,t;
            if (depth[x] > depth[y]) swap(x,y);
            t = depth[y] - depth[x];
            for (i = 0; i < MAXLOG; i++)
            {
                    if (t & (1 << i))
                            y = anc[y][i];
            }
            if (x == y) return x;
            for (i = MAXLOG - 1; i >= 0; i--)
            {
                    if (anc[x][i] != anc[y][i])
                    {
                            x = anc[x][i];
                            y = anc[y][i];        
                    }    
            } 
            return anc[x][0];
    }
    inline int get_root(int x)
    {
            if (fa[x] == x) return x;
            return fa[x] = get_root(fa[x]);
    }
    
    int main() 
    {
            
            while (scanf("%d%d",&n,&m) && (n || m))
            {
                    tot = 1;
                    ctot = cnt = timer = 0;
                    for (i = 1; i <= n; i++) 
                    {
                            head[i] = 0;
                            chead[i] = 0;
                            dfn[i] = 0;
                            low[i] = 0;
                            belong[i] = 0;
                            visited[i] = false;
                            fa[i] = i;
                            depth[i] = 0;
                    }
                    for (i = 1; i <= 2 * m + 1; i++) is_bridge[i] = false;
                    for (i = 1; i <= m; i++)
                    {
                            scanf("%d%d",&u,&v);
                            addedge(u,v);
                            addedge(v,u);    
                    }        
                    for (i = 1; i <= n; i++)    
                    {
                            if (!dfn[i])
                                    tarjan(i,0);        
                    }            
                    for (i = 1; i <= n; i++)
                    {
                            if (!belong[i])
                            {
                                    cnt++;
                                    dfs(i);
                            }
                    }
                    for (u = 1; u <= n; u++)
                    {
                            for (j = head[u]; j; j = e[j].nxt)
                            {
                                    v = e[j].to;
                                    if (belong[u] != belong[v])
                                    {
                                            addcedge(belong[u],belong[v]);
                                            addcedge(belong[v],belong[u]);
                                    }
                            }
                    }
                    ans = cnt - 1;
                    lca_init();
                    printf("Case %d:
    ",++TC);
                    scanf("%d",&q);
                    while (q--)
                    {
                            scanf("%d%d",&u,&v);
                            x = belong[u]; y = belong[v];
                            Lca = lca(x,y);
                            x = get_root(x);
                            while (depth[x] > depth[Lca])
                            {
                                    fa[x] = anc[x][0];
                                    ans--;
                                    x = get_root(x);
                            }
                            y = get_root(y);
                            while (depth[y] > depth[Lca])
                            {
                                    fa[y] = anc[y][0];
                                    ans--;
                                    y = get_root(y);
                            }
                            printf("%d
    ",ans);
                    }
                    printf("
    ");
            }
            
            return 0;
        
    }
  • 相关阅读:
    使用RSL 给FLEX 瘦身
    网络游戏同步法则
    .NET中的内存管理,GC机制,内存释放过程
    C++静态成员函数小结(转)
    关于GetSystemMetrics()函数
    CImage
    assert()函数用法总结
    Win32 系统部分函数
    818瘦身简单过程(增加内存)
    818内存升级到128m
  • 原文地址:https://www.cnblogs.com/evenbao/p/9397244.html
Copyright © 2011-2022 走看看