[题目链接]
http://poj.org/problem?id=3694
[算法]
首先,我们用tarjan算法求出所有的边双联通分量,然后,将这张图缩点
如果添加的边(x,y)在同一个双联通分量中,答案不变,否则,给belong[x]-belong[y]的路径上的边作标记,可以用并查集加速这个过程
[代码]
#include <algorithm> #include <bitset> #include <cctype> #include <cerrno> #include <clocale> #include <cmath> #include <complex> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <exception> #include <fstream> #include <functional> #include <limits> #include <list> #include <map> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <ostream> #include <queue> #include <set> #include <sstream> #include <stdexcept> #include <streambuf> #include <string> #include <utility> #include <vector> #include <cwchar> #include <cwctype> #include <stack> #include <limits.h> using namespace std; #define MAXN 100010 #define MAXM 200010 #define MAXLOG 20 struct edge { int to,nxt; } e[MAXM << 2],ec[MAXM << 2]; int i,j,n,m,ans,tot,ctot,cnt,u,v,timer,Lca,x,y,q,TC; int head[MAXN],chead[MAXN],low[MAXN],dfn[MAXN],belong[MAXN],fa[MAXN],depth[MAXN]; int anc[MAXN][MAXLOG]; bool is_bridge[MAXM << 1],visited[MAXN]; inline void addedge(int u,int v) { tot++; e[tot] = (edge){v,head[u]}; head[u] = tot; } inline void addcedge(int u,int v) { ctot++; ec[ctot] = (edge){v,chead[u]}; chead[u] = ctot; } inline void tarjan(int u,int t) { int i,v; dfn[u] = low[u] = ++timer; visited[u] = true; for (i = head[u]; i; i = e[i].nxt) { v = e[i].to; if (!visited[v]) { tarjan(v,i); if (low[v] > dfn[u]) is_bridge[i] = is_bridge[i ^ 1] = true; low[u] = min(low[u],low[v]); } else if (i != (t ^ 1)) low[u] = min(low[u],dfn[v]); } } inline void dfs(int u) { int i,v; belong[u] = cnt; for (i = head[u]; i; i = e[i].nxt) { v = e[i].to; if (belong[v] || is_bridge[i]) continue; dfs(v); } } inline void lca_init() { int i,j,u,v; queue< int > q; while (!q.empty()) q.pop(); q.push(1); depth[1] = 1; while (!q.empty()) { u = q.front(); q.pop(); for (i = chead[u]; i; i = ec[i].nxt) { v = ec[i].to; if (depth[v]) continue; depth[v] = depth[u] + 1; anc[v][0] = u; for (j = 1; j < MAXLOG; j++) anc[v][j] = anc[anc[v][j - 1]][j - 1]; q.push(v); } } } inline int lca(int x,int y) { int i,t; if (depth[x] > depth[y]) swap(x,y); t = depth[y] - depth[x]; for (i = 0; i < MAXLOG; i++) { if (t & (1 << i)) y = anc[y][i]; } if (x == y) return x; for (i = MAXLOG - 1; i >= 0; i--) { if (anc[x][i] != anc[y][i]) { x = anc[x][i]; y = anc[y][i]; } } return anc[x][0]; } inline int get_root(int x) { if (fa[x] == x) return x; return fa[x] = get_root(fa[x]); } int main() { while (scanf("%d%d",&n,&m) && (n || m)) { tot = 1; ctot = cnt = timer = 0; for (i = 1; i <= n; i++) { head[i] = 0; chead[i] = 0; dfn[i] = 0; low[i] = 0; belong[i] = 0; visited[i] = false; fa[i] = i; depth[i] = 0; } for (i = 1; i <= 2 * m + 1; i++) is_bridge[i] = false; for (i = 1; i <= m; i++) { scanf("%d%d",&u,&v); addedge(u,v); addedge(v,u); } for (i = 1; i <= n; i++) { if (!dfn[i]) tarjan(i,0); } for (i = 1; i <= n; i++) { if (!belong[i]) { cnt++; dfs(i); } } for (u = 1; u <= n; u++) { for (j = head[u]; j; j = e[j].nxt) { v = e[j].to; if (belong[u] != belong[v]) { addcedge(belong[u],belong[v]); addcedge(belong[v],belong[u]); } } } ans = cnt - 1; lca_init(); printf("Case %d: ",++TC); scanf("%d",&q); while (q--) { scanf("%d%d",&u,&v); x = belong[u]; y = belong[v]; Lca = lca(x,y); x = get_root(x); while (depth[x] > depth[Lca]) { fa[x] = anc[x][0]; ans--; x = get_root(x); } y = get_root(y); while (depth[y] > depth[Lca]) { fa[y] = anc[y][0]; ans--; y = get_root(y); } printf("%d ",ans); } printf(" "); } return 0; }