zoukankan      html  css  js  c++  java
  • [POJ 3463] Sightseeing

    [题目链接]

             http://poj.org/problem?id=3463

    [算法]

            最短路

    [代码]

           

    #include <algorithm>  
    #include <bitset>  
    #include <cctype>  
    #include <cerrno>  
    #include <clocale>  
    #include <cmath>  
    #include <complex>  
    #include <cstdio>  
    #include <cstdlib>  
    #include <cstring>  
    #include <ctime>  
    #include <deque>  
    #include <exception>  
    #include <fstream>  
    #include <functional>  
    #include <limits>  
    #include <list>  
    #include <map>  
    #include <iomanip>  
    #include <ios>  
    #include <iosfwd>  
    #include <iostream>  
    #include <istream>  
    #include <ostream>  
    #include <queue>  
    #include <set>  
    #include <sstream>  
    #include <stdexcept>  
    #include <streambuf>  
    #include <string>  
    #include <utility>  
    #include <vector>  
    #include <cwchar>  
    #include <cwctype>  
    #include <stack>  
    #include <limits.h>
    using namespace std;
    #define MAXN 2010
    #define MAXM 20010
    const int INF = 2e9;
    
    struct edge
    {
            int to,w,nxt;
    } e[MAXM << 1];
    
    int i,n,m,ans,tot,tmp,val,shortest,S,T,TC;
    int head[MAXN],rhead[MAXN],u[MAXM],v[MAXM],w[MAXM],
            dista[MAXN],distb[MAXN],cnta[MAXN],cntb[MAXN];
    
    inline void addedge(int u,int v,int w)
    {
            tot++;
            e[tot] = (edge){v,w,head[u]};
            head[u] = tot;
    }
    inline void addredge(int u,int v,int w)
    {
            tot++;
            e[tot] = (edge){v,w,rhead[u]};
            rhead[u] = tot;
    }
    inline void spfa1(int s)
    {
            int i,l,r,u,v,w;
            static int q[MAXN];
            static bool inq[MAXN];
            for (i = 1; i <= n; i++) 
            {
                    dista[i] = INF;
                    inq[i] = false;
            }
            q[l = r = 1] = s;
            inq[s] = true;
            dista[s] = 0; 
            while (l <= r)
            {
                    u = q[l];
                    l++;
                    inq[u] = false;
                    for (i = head[u]; i; i = e[i].nxt)
                    {
                            v = e[i].to;
                            w = e[i].w;
                            if (dista[u] + w < dista[v])
                            {
                                    dista[v] = dista[u] + w;
                                    if (!inq[v])
                                    {
                                            inq[v] = true;
                                            q[++r] = v;
                                    }
                            } 
                    }
            }
    }
    inline void spfa2(int s)
    {
            int i,l,r,u,v,w;
            static int q[MAXN];
            static bool inq[MAXN];
            for (i = 1; i <= n; i++)
            {
                    distb[i] = INF;
                    inq[i] = false;
            }
            q[l = r = 1] = s;
            distb[s] = 0; 
            inq[s] = true;
            while (l <= r)
            {
                    u = q[l];
                    l++;
                    inq[u] = false;
                    for (i = rhead[u]; i; i = e[i].nxt)
                    {
                            v = e[i].to;
                            w = e[i].w;
                            if (distb[u] + w < distb[v])
                            {
                                    distb[v] = distb[u] + w;
                                    if (!inq[v])
                                    {
                                            inq[v] = true;
                                            q[++r] = v;
                                    }
                            } 
                    }
            }
    }
    inline int dp1(int u)
    {
            int i,v,w;
            if (cnta[u] != -1) return cnta[u];
            if (u == S) return cnta[u] = 1;
            cnta[u] = 0;
            for (i = rhead[u]; i; i = e[i].nxt)
            {
                    v = e[i].to;
                    w = e[i].w;
                    if (dista[v] + w == dista[u]) cnta[u] += dp1(v);
            }
            return cnta[u];
    }
    inline int dp2(int u)
    {
            int i,v,w;
            if (cntb[u] != -1) return cntb[u];
            if (u == T) return cntb[u] = 1;
            cntb[u] = 0;
            for (i = head[u]; i; i = e[i].nxt)
            {
                    v = e[i].to;
                    w = e[i].w;
                    if (dista[u] + w == dista[v]) cntb[u] += dp2(v);
            }
            return cntb[u];
    }
    int main() 
    {
            
            scanf("%d",&TC);
            while (TC--)
            {
                    scanf("%d%d",&n,&m);
                    tot = 0;
                    for (i = 1; i <= n; i++) 
                    {
                            head[i] = rhead[i] = 0;
                            cnta[i] = cntb[i] = -1;
                    }
                    for (i = 1; i <= m; i++)
                    {
                            scanf("%d%d%d",&u[i],&v[i],&w[i]);
                            addedge(u[i],v[i],w[i]);
                            addredge(v[i],u[i],w[i]);
                    }        
                    scanf("%d%d",&S,&T);
                    spfa1(S);
                    spfa2(T);
                    for (i = 1; i <= n; i++) dp1(i);
                    for (i = 1; i <= n; i++) dp2(i);
                    shortest = dista[T];
                    ans = cnta[T];
                    for (i = 1; i <= m; i++)
                    {
                            tmp = dista[u[i]] + w[i] + distb[v[i]];
                            if (dista[u[i]] + w[i] == dista[v[i]] + 1 && tmp == shortest + 1) ans += cnta[u[i]] * cntb[v[i]];
                    }
                    printf("%d
    ",ans);
            }
            
            return 0;
        
    }
  • 相关阅读:
    导数,微积分,牛顿运动学制作创意地图
    逻辑回归的算法思想
    偏导数
    POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)
    POJ2289:Jamie's Contact Groups(二分+二分图多重匹配)
    HDU3829:Cat VS Dog(最大独立集)
    POJ2594:Treasure Exploration(Floyd + 最小路径覆盖)
    HDU1151:Air Raid(最小边覆盖)
    HDU1054 Strategic Game(最小点覆盖)
    POJ3020:Antenna Placement(二分图匹配)
  • 原文地址:https://www.cnblogs.com/evenbao/p/9429622.html
Copyright © 2011-2022 走看看