zoukankan      html  css  js  c++  java
  • [JSOI 2016] 灯塔

    [题目链接]

             https://www.lydsy.com/JudgeOnline/problem.php?id=4850

    [算法]

            首先对不等式进行移项 :

             hj <= hi + p - sqrt(|i - j|)

             p >= hj - hi + sqrt(|i - j|)

             显然 , sqrt(|i - j|)最多只有sqrt(n)个不同的值 

             用ST表求区间最值 , 然后分块计算即可

             时间复杂度: O(Nsqrt(N))

    [代码]

           

    #include<bits/stdc++.h>
    using namespace std;
    #define MAXN 200010
    #define MAXLOG 20
    #define sqr(x) x * x
    
    int n;
    int lg[MAXN] , bit[25];
    long long h[MAXN];
    long long value[MAXN][MAXLOG];
    
    template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
    template <typename T> inline void read(T &x)
    {
        T f = 1; x = 0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
        for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
        x *= f;
    }
    inline long long query(int l,int r)
    {
        int k = lg[r - l + 1];
        return max(value[l][k],value[r - bit[k] + 1][k]);
    }
    
    int main()
    {
        
        read(n);
        for (register int i = 1; i < MAXN; i++) lg[i] = (double)log(i) / log(2.0);
        bit[0] = 1;
        for (register int i = 1; i <= 20; i++) bit[i] = bit[i - 1] << 1;
        for (register int i = 1; i <= n; i++) read(h[i]);
        for (register int i = 1; i <= n; i++) value[i][0] = h[i];
        for (register int i = 1; i < MAXLOG; i++)
        {
            for (register int j = 1; j + (1 << i) <= n; j++)
            {
                value[j][i] = max(value[j][i - 1],value[j + bit[i - 1]][i - 1]);
            }    
        }    
        for (register int i = 1; i <= n; i++)
        {
            int l = i , r , sq = 1;
            long long ans = 0;
            while (l != 1)
            {                  
                r = l - 1;
                l = max(1,i - sqr(sq));
                chkmax(ans,sq + query(l,r) - h[i]);
                sq++;
            }    
            r = i , sq = 1;
            while (r != n)
            {
                l = r + 1;
                r = min(n,i + sqr(sq));
                chkmax(ans,sq + query(l,r) - h[i]);    
                sq++;        
            }
            printf("%lld
    ",ans);
        }
        
        return 0;
    }
  • 相关阅读:
    欧几里得算法及扩展欧几里得(含)
    RP
    P1734_最大约数和
    The 2017 ACM-ICPC Asia East Continent League Final记录
    【数据结构】bzoj1651专用牛棚
    【数据结构】bzoj1455罗马游戏
    【数据结构】bzoj1636/bzoj1699排队
    【数据结构】bzoj3747Kinoman
    【计算几何】奇特的门
    Topcoder SRM 608 div1 题解
  • 原文地址:https://www.cnblogs.com/evenbao/p/9745529.html
Copyright © 2011-2022 走看看