zoukankan      html  css  js  c++  java
  • 1013 Battle Over Cities (dfs 或 并查集)

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

    For example, if we have 3 cities and 2 highways connecting city1​​-city2​​ and city1​​-city3​​. Then if city1​​ is occupied by the enemy, we must have 1 highway repaired, that is the highway city2​​-city3​​.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 3 numbers N (<), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then Mlines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

    Output Specification:

    For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

    Sample Input:

    3 2 3
    1 2
    1 3
    1 2 3

    Sample Output:

    1
    0
    0
    

      

    dfs:

    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    vector<int> v[1010];
    int n,m,k,t1,t2;
    bool vis[1010];
    
    void dfs(int x){
        if(x==t1) return;
        vis[x]=true;
        for(int i=0;i<v[x].size();i++){
            if(vis[v[x][i]]==false)
                dfs(v[x][i]);
        }
    }
    
    int main(){
        scanf("%d %d %d",&n,&m,&k);
        for(int i=1;i<=m;i++){
            scanf("%d %d",&t1,&t2);
            v[t1].push_back(t2);
            v[t2].push_back(t1);
        }
        for(int i=1;i<=k;i++){
            scanf("%d",&t1);
            memset(vis,0,sizeof(vis));
            int block=0;
            for(int i=1;i<=n;i++){
                if(i!=t1&&!vis[i]){
                    dfs(i);
                    block++;
                }
            }
            printf("%d
    ",block-1);
        }
        return 0;
    }

    并查集:

    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    vector<int> v[1010];
    int n,m,k,t1,t2;
    bool vis[1010];
    int father[1010];
    
    int findFather(int x){
        if(father[x]==x) return x;
        else{
            int temp=findFather(father[x]);
            father[x]=temp;
            return temp;
        }
    }
    
    void Union(int a,int b){
        int fa=findFather(a);
        int fb=findFather(b);
        if(a!=b){
            father[fa]=fb;
        }
    }
    
    int main(){
        scanf("%d %d %d",&n,&m,&k);
        for(int i=1;i<=m;i++){
            scanf("%d %d",&t1,&t2);
            v[t1].push_back(t2);
            v[t2].push_back(t1);
        }
        for(int i=1;i<=k;i++){
            scanf("%d",&t1);
            memset(vis,0,sizeof(vis));
            for(int i=1;i<=n;i++)
                father[i]=i;
            for(int i=1;i<=n;i++){
                for(int j=0;j<v[i].size();j++){
                    int x=i,y=v[i][j];
                    if(x==t1||y==t1)
                        continue;
                    Union(x,y);//合并祖先 
                }
            }
            int block=0;
            for(int i=1;i<=n;i++){
                if(i==t1)continue;
                int fa_i=findFather(i);
                if(vis[fa_i]==false){//找一共有多少不同祖先 
                    block++;
                    vis[fa_i]=true;
                }
            }
            printf("%d
    ",block-1);
        }
        return 0;
        
    }
  • 相关阅读:
    剑指offer23-二叉搜索树的后序遍历序列
    剑指offer24-二叉树中和为某一值的路径
    剑指offer-复杂链表的复制
    剑指offer-二叉搜索树与双向链表
    剑指offer-字符串的排序
    剑指offer-数组中出现次数超过一半的数字
    剑指offer-最小的k个数
    c++中参数加&与不加的区别
    第九届蓝桥杯(A组填空题)
    基于优先级的多道程序系统作业调度——基于优先级
  • 原文地址:https://www.cnblogs.com/exciting/p/10445500.html
Copyright © 2011-2022 走看看