zoukankan      html  css  js  c++  java
  • [转]使用中国剩余定理中处理某些方程模数不互质的方法

    原地址:http://hi.baidu.com/aekdycoin/blog/item/71d7a842b93f611b73f05da4.html  

    给定方程
    x = c1 (mod b1) ……………………(1)
    x = c2(mod b2) ………………………(2)
    (b1,b2)可以不为1
    于是通过取mod 定义,我们得到

    x = k1 * b1 + c1………………(3)
    (3) 带入(2)
    k1 * b1 + c1 = c2 (mod b2)…………(4)
    化简
    k1 * b1 = c2 - c1 (mod b2)…………(5)
    于是可以解得到
    令G = gcd(b1,b2),C = c2 - c1 (mod b2)
    那么由(5)得到
    k1 * b1 = W * b2 + C
    ---->>>>>
    k1 * b1 / G = W * b2 / G + C / G
    令C'  = C/G
    k1 * b1 / G = W * b2 / G + C '
    k1 * b1 / G = C' (mod b2 / G)
    --->

    {

    关于(6)怎么得到的,我做一下解释。在这纠结了好长时间。

    (k1*(b1/G)) % (b2/G) = C' %(b2/G);

    k1%(b2/G) = C'%(b2/G) / (b1/G)%(b2/G);

    k1%(b2/G) = (C' * Xb1) % (b2/G)  ; Xb1是b1的逆元

    令K = C' * Xb1;

    }


    k1 = K (mod b2/G)………………(6)

    那么有
    k1 = k' * b2/G + K………………(7)
    (7)带入(3)
    x = k' * b2 * b1/G + K * b1 + c1………………(8)

    x = K*b1 + c1 (mod b1 * b2/G)

    证毕!

    贴一下模板 POJ 2891 很典型的这种问题:

    //合并到最后得到一个式子 x = c(mod b);所以要求的x就是c。
    
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <vector>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <set>
    
    #define CL(arr, val)    memset(arr, val, sizeof(arr))
    #define REP(i, n)       for((i) = 0; (i) < (n); ++(i))
    #define FOR(i, l, h)    for((i) = (l); (i) <= (h); ++(i))
    #define FORD(i, h, l)   for((i) = (h); (i) >= (l); --(i))
    #define L(x)    (x) << 1
    #define R(x)    (x) << 1 | 1
    #define MID(l, r)   (l + r) >> 1
    #define Min(x, y)   x < y ? x : y
    #define Max(x, y)   x < y ? y : x
    #define E(x)    (1 << (x))
    
    typedef long long LL;
    using namespace std;
    
    LL gcd(LL a, LL b) {
        return b ? gcd(b, a%b) : a;
    }
    
    LL ext_gcd(LL a, LL b, LL& x, LL& y) {
        if(b == 0) {
            x = 1; y = 0;
            return a;
        }
        LL p = ext_gcd(b, a%b, x, y);
        LL tmp = x;
        x = y; y = tmp - (a/b)*y;
        return p;
    }
    
    LL inmod(LL a, LL n) {
        LL x, y;
        if(ext_gcd(a, n, x, y) != 1)    return -1;
        return (x%n + n)%n;
    }
    
    int mergef(LL b1, LL c1, LL b2, LL c2, LL& b, LL& c) {
        LL tb1 = b1, tb2 = b2;
        c = ((c2 - c1)%b2 + b2)%b2;
        LL G = gcd(b1, b2);
        if(c%G) return 0;
        c /= G;
        b1 /= G;
        b2 /= G;
        c *= inmod(b1, b2);
        c %= b2;
        c *= tb1;
        c += c1;
        b = tb1*tb2/G;
        c %= b;
        return 1;
    }
    
    int main() {
        //freopen("data.in", "r", stdin);
    
        int t, i;
        LL b1, c1, b2, c2, b, c;
    
        while(~scanf("%d", &t)) {
            bool flag = true;
            scanf("%lld%lld", &b1, &c1);
            if(c1 >= b1) flag = false;
            for(i = 1;  i < t; ++i) {
                scanf("%lld%lld", &b2, &c2);
                if(c2 >= b2) flag = false;
                if(!flag)   continue;
                if(mergef(b1, c1, b2, c2, b, c) == 0)    flag = false;
                //printf("(%d %d), (%d %d), (%d %d)\n", b1, c1, b2, c2, b, c);
                b1 = b; c1 = c;
            }
            if(flag)    printf("%lld\n", c);
            else    printf("-1\n");
        }
        return 0;
    }
  • 相关阅读:
    2013面试C++小结
    Linux C 面试题总结 .
    [SCOI2011]糖果
    python——简单爬虫
    python——ADSL拨号程序
    python——处理xls表格
    Vsphere初试——架设Panabit行为管理
    Vsphere初试——使用Vsphere client
    Vsphere初试——基本安装
    Python2与Python3的不同点
  • 原文地址:https://www.cnblogs.com/vongang/p/2551644.html
Copyright © 2011-2022 走看看