zoukankan      html  css  js  c++  java
  • Elastic-Job源码分析之AbstractElasticJobExecutor分析

    还记得我们在JobScheduler中,在创建任务详情时,会调用一个建造器JobBuilder来创建一个Job,类型是LiteJob。

    LiteJob.java

    /**
     * Lite调度作业.
     *
     * @author zhangliang
     */
    public final class LiteJob implements Job {
        
        @Setter
        private ElasticJob elasticJob;
        
        @Setter
        private JobFacade jobFacade;
        
        @Override
        public void execute(final JobExecutionContext context) throws JobExecutionException {
            JobExecutorFactory.getJobExecutor(elasticJob, jobFacade).execute();
        }
    }
    

    进入到LiteJob,我们可以看到,它继承自quartz中的Job,同时新增了两个属性elasticJob和jobFacade,这个我们后续分析。我们关注的是execute方法。首先通过工厂模式,确定了执行器,我们可以看到有三种执行器,分别是ScriptJobExecutor、SimpleJobExecutor和DataflowJobExecutor,分别对应了三种job类型。由于SimpleJob覆盖了80%的使用场景,我们主要来分析一下SimpleJobExecutor。

    SimpleExecutor.java

    public final class SimpleJobExecutor extends AbstractElasticJobExecutor {
        
        private final SimpleJob simpleJob;
        
        public SimpleJobExecutor(final SimpleJob simpleJob, final JobFacade jobFacade) {
            super(jobFacade);
            this.simpleJob = simpleJob;
        }
        
        @Override
        protected void process(final ShardingContext shardingContext) {
            simpleJob.execute(shardingContext);
        }
    }
    

    这个执行器继承自AbstractElasticJobExecutor,然后里面实现的内容也很简单,子类需要实现父类的方法process,其他的方法在父类中执行。我们重点看一下AbstractElasticJobExecutor这个基础执行器。

    AbstractElasticJobExecutor.java

    从代码结构看,主要看几个方法,execute()和process(),这边都是前后依赖的,所以我们顺序看一下。

    execute()

    try {
        jobFacade.checkJobExecutionEnvironment();
    } catch (final JobExecutionEnvironmentException cause) {
        jobExceptionHandler.handleException(jobName, cause);
    }
    

    首先检查运行环境信息。跟进去,我们可以发现,检查的内容是本机与注册中心的时间误差秒数是否在允许范围,就是我们配置的max-time-diff-seconds,超过范围就直接抛出异常。

    ShardingContexts shardingContexts = jobFacade.getShardingContexts();
    if (shardingContexts.isAllowSendJobEvent()) {
        jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_STAGING, String.format("Job '%s' execute begin.", jobName));
    }
    

    接着,首先获取分片上下文信息。获取分片上下文的具体执行内容为:

    @Override
    public ShardingContexts getShardingContexts() {
        boolean isFailover = configService.load(true).isFailover();
        if (isFailover) {
            List<Integer> failoverShardingItems = failoverService.getLocalFailoverItems();
            if (!failoverShardingItems.isEmpty()) {
                return executionContextService.getJobShardingContext(failoverShardingItems);
            }
        }
        shardingService.shardingIfNecessary();
        List<Integer> shardingItems = shardingService.getLocalShardingItems();
        if (isFailover) {
            shardingItems.removeAll(failoverService.getLocalTakeOffItems());
        }
        shardingItems.removeAll(executionService.getDisabledItems(shardingItems));
        return executionContextService.getJobShardingContext(shardingItems);
    }
    

    首先根据配置判断是否开启失效转移failover,开启表示如果作业在一次任务执行中途宕机,允许将该次未完成的任务在另一作业节点上补偿执行。

    下一步,判断是否需要分片。

    public void shardingIfNecessary() {
        List<JobInstance> availableJobInstances = instanceService.getAvailableJobInstances();//获取可用任务节点
        if (!isNeedSharding() || availableJobInstances.isEmpty()) {
            return;
        }
        if (!leaderService.isLeaderUntilBlock()) {//判断当前节点是否是主节点,如果主节点正在选举,则阻塞至主节点选举完成后再返回
            blockUntilShardingCompleted();//阻塞至分片完成
            return;
        }
        waitingOtherJobCompleted();
        LiteJobConfiguration liteJobConfig = configService.load(false);//从配置文件中获取任务配置信息
        int shardingTotalCount = liteJobConfig.getTypeConfig().getCoreConfig().getShardingTotalCount();
        log.debug("Job '{}' sharding begin.", jobName);
        jobNodeStorage.fillEphemeralJobNode(ShardingNode.PROCESSING, "");
        resetShardingInfo(shardingTotalCount);//重置分片信息
        JobShardingStrategy jobShardingStrategy = JobShardingStrategyFactory.getStrategy(liteJobConfig.getJobShardingStrategyClass());//获取配置文件中的分片策略
        jobNodeStorage.executeInTransaction(new PersistShardingInfoTransactionExecutionCallback(jobShardingStrategy.sharding(availableJobInstances, jobName, shardingTotalCount)));//根据不同的策略进行分片,这块后续我们再分析
        log.debug("Job '{}' sharding complete.", jobName);
    }
    

    分片判断完成后,获取本机的分片项,然后如果开启失效转移,删除本地失效转移项。

    言归正传,获取到分片上下文shardingContexts后,判断是否允许发送任务事件。

    if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {//设置任务被错过执行的标记
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
                    "Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobName, 
                    shardingContexts.getShardingItemParameters().keySet()));
        }
        return;
    }
    

    分片项被错过执行,发布任务事件。下一步,准备执行。

    try {
        jobFacade.beforeJobExecuted(shardingContexts);
    } catch (final Throwable cause) {
        jobExceptionHandler.handleException(jobName, cause);
    }
    execute(shardingContexts, JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);
    while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
        jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
        execute(shardingContexts, JobExecutionEvent.ExecutionSource.MISFIRE);
    }
    jobFacade.failoverIfNecessary();
    try {
        jobFacade.afterJobExecuted(shardingContexts);
    } catch (final Throwable cause) {
        jobExceptionHandler.handleException(jobName, cause);
    }
    

    先做一些执行前准备(清理上次执行信息),然后执行,判断是否开启失效转移,执行成功后做一些执行后处理。

    execute(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource)

    看代码...

    if (shardingContexts.getShardingItemParameters().isEmpty()) {
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobName));
        }
        return;
    }
    jobFacade.registerJobBegin(shardingContexts);
    String taskId = shardingContexts.getTaskId();
    if (shardingContexts.isAllowSendJobEvent()) {
        jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
    }
    try {
        process(shardingContexts, executionSource);
    } finally {
        // TODO 考虑增加作业失败的状态,并且考虑如何处理作业失败的整体回路
        jobFacade.registerJobCompleted(shardingContexts);
        if (itemErrorMessages.isEmpty()) {
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
            }
        } else {
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
            }
        }
    }
    

    主要做一些前期准备和后期的方法。重点是process方法,我们继续看。

    process(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource)

    Collection<Integer> items = shardingContexts.getShardingItemParameters().keySet();
    if (1 == items.size()) {//一个分片,立即执行
        int item = shardingContexts.getShardingItemParameters().keySet().iterator().next();
        JobExecutionEvent jobExecutionEvent =  new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, item);
        process(shardingContexts, item, jobExecutionEvent);
        return;
    }
    final CountDownLatch latch = new CountDownLatch(items.size());//多个分片,使用CountDownLatch,并行执行
    for (final int each : items) {
        final JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, each);
        if (executorService.isShutdown()) {
            return;
        }
        executorService.submit(new Runnable() {
                    
            @Override
            public void run() {
                try {
                    process(shardingContexts, each, jobExecutionEvent);
                } finally {
                    latch.countDown();
                }
            }
        });
    }
    try {
        latch.await();
    } catch (final InterruptedException ex) {
        Thread.currentThread().interrupt();
    }
    

    private void process(final ShardingContexts shardingContexts, final int item, final JobExecutionEvent startEvent)

    if (shardingContexts.isAllowSendJobEvent()) {
        jobFacade.postJobExecutionEvent(startEvent);
    }
    log.trace("Job '{}' executing, item is: '{}'.", jobName, item);
    JobExecutionEvent completeEvent;
    try {
        process(new ShardingContext(shardingContexts, item));
        completeEvent = startEvent.executionSuccess();
        log.trace("Job '{}' executed, item is: '{}'.", jobName, item);
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobExecutionEvent(completeEvent);
        }
    } catch (final Throwable cause) {
        completeEvent = startEvent.executionFailure(cause);
        jobFacade.postJobExecutionEvent(completeEvent);
        itemErrorMessages.put(item, ExceptionUtil.transform(cause));
        jobExceptionHandler.handleException(jobName, cause);
    }
    
  • 相关阅读:
    [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
    [再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)
    简单的Slony-I设置实例
    Slony-I的限制
    PPAS上运行pg_dump经过II
    PPAS上运行pg_dump经过
    PL/pgSQL学习笔记之十一
    PL/pgSQL学习笔记之十
    PL/pgSQL学习笔记之九
    PL/pgSQL学习笔记之八
  • 原文地址:https://www.cnblogs.com/f-zhao/p/6879540.html
Copyright © 2011-2022 走看看