zoukankan      html  css  js  c++  java
  • 【Kafka源码】处理请求


    在KafkaServer中的入口在:

    apis = new KafkaApis(socketServer.requestChannel, replicaManager, groupCoordinator,
            kafkaController, zkUtils, config.brokerId, config, metadataCache, metrics, authorizer)
    requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads)
    

    首先根据相关参数,实例化KafkaApis,然后实例化KafkaRequestHandlerPool。下面我们首先看下KafkaRequestHandlerPool。

    一、KafkaRequestHandlerPool

    class KafkaRequestHandlerPool(val brokerId: Int,
                                  val requestChannel: RequestChannel,
                                  val apis: KafkaApis,
                                  numThreads: Int) extends Logging with KafkaMetricsGroup {
    
      /* a meter to track the average free capacity of the request handlers */
      private val aggregateIdleMeter = newMeter("RequestHandlerAvgIdlePercent", "percent", TimeUnit.NANOSECONDS)
    
      this.logIdent = "[Kafka Request Handler on Broker " + brokerId + "], "
      val threads = new Array[Thread](numThreads)
      val runnables = new Array[KafkaRequestHandler](numThreads)
      for(i <- 0 until numThreads) {
        runnables(i) = new KafkaRequestHandler(i, brokerId, aggregateIdleMeter, numThreads, requestChannel, apis)
        threads(i) = Utils.daemonThread("kafka-request-handler-" + i, runnables(i))
        threads(i).start()
      }
    //...
    }
    

    主要是启动了numThreads个数的线程,然后线程中执行的内容是KafkaRequestHandler。

    /**
     * 响应kafka请求的线程
     */
    class KafkaRequestHandler(id: Int,
                              brokerId: Int,
                              val aggregateIdleMeter: Meter,
                              val totalHandlerThreads: Int,
                              val requestChannel: RequestChannel,
                              apis: KafkaApis) extends Runnable with Logging {
      this.logIdent = "[Kafka Request Handler " + id + " on Broker " + brokerId + "], "
    
      def run() {
        while(true) {
          try {
            var req : RequestChannel.Request = null
            while (req == null) {
              // We use a single meter for aggregate idle percentage for the thread pool.
              // Since meter is calculated as total_recorded_value / time_window and
              // time_window is independent of the number of threads, each recorded idle
              // time should be discounted by # threads.
              val startSelectTime = SystemTime.nanoseconds
              req = requestChannel.receiveRequest(300)
              val idleTime = SystemTime.nanoseconds - startSelectTime
              aggregateIdleMeter.mark(idleTime / totalHandlerThreads)
            }
    
            if(req eq RequestChannel.AllDone) {
              debug("Kafka request handler %d on broker %d received shut down command".format(
                id, brokerId))
              return
            }
            req.requestDequeueTimeMs = SystemTime.milliseconds
            trace("Kafka request handler %d on broker %d handling request %s".format(id, brokerId, req))
            apis.handle(req)//这边是如何处理请求的重点
          } catch {
            case e: Throwable => error("Exception when handling request", e)
          }
        }
      }
        //shutdown。。
    }
    

    在run方法中,我们可以看到,主要处理消息的地方是api.handle(req)。下面我们主要看下这块的内容。

    二、KafkaApis.handle

    直接看代码:

    /**
     * Top-level method that handles all requests and multiplexes to the right api
     */
    def handle(request: RequestChannel.Request) {
      try {
        trace("Handling request:%s from connection %s;securityProtocol:%s,principal:%s".
        format(request.requestDesc(true), request.connectionId, request.securityProtocol, request.session.principal))
          ApiKeys.forId(request.requestId) match {//根据requestId,调用不同的方法,处理不同的请求
            case ApiKeys.PRODUCE => handleProducerRequest(request)
            case ApiKeys.FETCH => handleFetchRequest(request)
            case ApiKeys.LIST_OFFSETS => handleOffsetRequest(request)
            case ApiKeys.METADATA => handleTopicMetadataRequest(request)
            case ApiKeys.LEADER_AND_ISR => handleLeaderAndIsrRequest(request)
            case ApiKeys.STOP_REPLICA => handleStopReplicaRequest(request)
            case ApiKeys.UPDATE_METADATA_KEY => handleUpdateMetadataRequest(request)
            case ApiKeys.CONTROLLED_SHUTDOWN_KEY => handleControlledShutdownRequest(request)
            case ApiKeys.OFFSET_COMMIT => handleOffsetCommitRequest(request)
            case ApiKeys.OFFSET_FETCH => handleOffsetFetchRequest(request)
            case ApiKeys.GROUP_COORDINATOR => handleGroupCoordinatorRequest(request)
            case ApiKeys.JOIN_GROUP => handleJoinGroupRequest(request)
            case ApiKeys.HEARTBEAT => handleHeartbeatRequest(request)
            case ApiKeys.LEAVE_GROUP => handleLeaveGroupRequest(request)
            case ApiKeys.SYNC_GROUP => handleSyncGroupRequest(request)
            case ApiKeys.DESCRIBE_GROUPS => handleDescribeGroupRequest(request)
            case ApiKeys.LIST_GROUPS => handleListGroupsRequest(request)
            case ApiKeys.SASL_HANDSHAKE => handleSaslHandshakeRequest(request)
            case ApiKeys.API_VERSIONS => handleApiVersionsRequest(request)
            case requestId => throw new KafkaException("Unknown api code " + requestId)
          }
        } catch {
          case e: Throwable =>
            if (request.requestObj != null) {
              request.requestObj.handleError(e, requestChannel, request)
              error("Error when handling request %s".format(request.requestObj), e)
            } else {
              val response = request.body.getErrorResponse(request.header.apiVersion, e)
              val respHeader = new ResponseHeader(request.header.correlationId)
    
              /* If request doesn't have a default error response, we just close the connection.
                 For example, when produce request has acks set to 0 */
              if (response == null)
                requestChannel.closeConnection(request.processor, request)
              else
                requestChannel.sendResponse(new Response(request, new ResponseSend(request.connectionId, respHeader, response)))
    
              error("Error when handling request %s".format(request.body), e)
         }
      } finally
        request.apiLocalCompleteTimeMs = SystemTime.milliseconds
    }
    

    2.1 ApiKeys枚举类

    PRODUCE(0, "Produce"),//生产者消息
    FETCH(1, "Fetch"),//消费者获取消息
    LIST_OFFSETS(2, "Offsets"),//获取偏移量
    METADATA(3, "Metadata"),//获取topic源数据
    LEADER_AND_ISR(4, "LeaderAndIsr"),
    STOP_REPLICA(5, "StopReplica"),//停止副本复制
    UPDATE_METADATA_KEY(6, "UpdateMetadata"),//更新源数据
    CONTROLLED_SHUTDOWN_KEY(7, "ControlledShutdown"),//controller停止
    OFFSET_COMMIT(8, "OffsetCommit"),//提交offset
    OFFSET_FETCH(9, "OffsetFetch"),//获取offset
    GROUP_COORDINATOR(10, "GroupCoordinator"),//组协调
    JOIN_GROUP(11, "JoinGroup"),//加入组
    HEARTBEAT(12, "Heartbeat"),//心跳
    LEAVE_GROUP(13, "LeaveGroup"),//离开组
    SYNC_GROUP(14, "SyncGroup"),//同步组
    DESCRIBE_GROUPS(15, "DescribeGroups"),//描述组
    LIST_GROUPS(16, "ListGroups"),//列出组
    SASL_HANDSHAKE(17, "SaslHandshake"),//加密握手
    API_VERSIONS(18, "ApiVersions");//版本
    

    这块比较简单,主要的是Request的数据结构,还有后续的处理方法。下面我们逐步来分析。

    三、Request数据结构

    所有的请求,最终都会变成这个RequestChannel.Request。所以我们先看下这个Request。

    case class Request(processor: Int, connectionId: String, session: Session, private var buffer: ByteBuffer, startTimeMs: Long, securityProtocol: SecurityProtocol) {
        //...
        val requestId = buffer.getShort()
    
        private val keyToNameAndDeserializerMap: Map[Short, (ByteBuffer) => RequestOrResponse]=
          Map(ApiKeys.FETCH.id -> FetchRequest.readFrom,
            ApiKeys.CONTROLLED_SHUTDOWN_KEY.id -> ControlledShutdownRequest.readFrom
          )
    
        val requestObj =
          keyToNameAndDeserializerMap.get(requestId).map(readFrom => readFrom(buffer)).orNull
    
        val header: RequestHeader =
          if (requestObj == null) {
            buffer.rewind
            try RequestHeader.parse(buffer)
            catch {
              case ex: Throwable =>
                throw new InvalidRequestException(s"Error parsing request header. Our best guess of the apiKey is: $requestId", ex)
            }
          } else
            null
        val body: AbstractRequest =
          if (requestObj == null)
            try {
              // For unsupported version of ApiVersionsRequest, create a dummy request to enable an error response to be returned later
              if (header.apiKey == ApiKeys.API_VERSIONS.id && !Protocol.apiVersionSupported(header.apiKey, header.apiVersion))
                new ApiVersionsRequest
              else
                AbstractRequest.getRequest(header.apiKey, header.apiVersion, buffer)
            } catch {
              case ex: Throwable =>
                throw new InvalidRequestException(s"Error getting request for apiKey: ${header.apiKey} and apiVersion: ${header.apiVersion}", ex)
            }
          else
            null
    
        buffer = null
        private val requestLogger = Logger.getLogger("kafka.request.logger")
    
        def requestDesc(details: Boolean): String = {
          if (requestObj != null)
            requestObj.describe(details)
          else
            header.toString + " -- " + body.toString
        }
        //...
    }
    

    主要有几个部分,

    • 首先是requestId,是一个short类型的值。
    • 然后是header,即消息头,是一个RequestHeader
    • 最后是body,是消息的内容,类型为AbstractRequest

    3.1 requestId

    这个requestId表示的是api的类型,KafkaApis需要根据这个requestId,来判断调用哪个方法处理消息。

    3.2 header

    我们看下RequestHeader的结构。

    private final short apiKey;
    private final short apiVersion;
    private final String clientId;
    private final int correlationId;
    

    主要是四个变量,apiKey,APIVersion,clientId,correlationId。

    3.3 body

    消息体,对应的类为AbstractRequest。主要的内容是根据版本号和apiKey来解析出消息的具体内容。

    public static AbstractRequest getRequest(int requestId, int versionId, ByteBuffer buffer) {
        ApiKeys apiKey = ApiKeys.forId(requestId);
        switch (apiKey) {
            case PRODUCE:
                return ProduceRequest.parse(buffer, versionId);
            case FETCH:
                return FetchRequest.parse(buffer, versionId);
            case LIST_OFFSETS:
                return ListOffsetRequest.parse(buffer, versionId);
            case METADATA:
                return MetadataRequest.parse(buffer, versionId);
            case OFFSET_COMMIT:
                return OffsetCommitRequest.parse(buffer, versionId);
            case OFFSET_FETCH:
                return OffsetFetchRequest.parse(buffer, versionId);
            case GROUP_COORDINATOR:
                return GroupCoordinatorRequest.parse(buffer, versionId);
            case JOIN_GROUP:
                return JoinGroupRequest.parse(buffer, versionId);
            case HEARTBEAT:
                return HeartbeatRequest.parse(buffer, versionId);
            case LEAVE_GROUP:
                return LeaveGroupRequest.parse(buffer, versionId);
            case SYNC_GROUP:
                return SyncGroupRequest.parse(buffer, versionId);
            case STOP_REPLICA:
                return StopReplicaRequest.parse(buffer, versionId);
            case CONTROLLED_SHUTDOWN_KEY:
                return ControlledShutdownRequest.parse(buffer, versionId);
            case UPDATE_METADATA_KEY:
                return UpdateMetadataRequest.parse(buffer, versionId);
            case LEADER_AND_ISR:
                return LeaderAndIsrRequest.parse(buffer, versionId);
            case DESCRIBE_GROUPS:
                    return DescribeGroupsRequest.parse(buffer, versionId);
            case LIST_GROUPS:
                return ListGroupsRequest.parse(buffer, versionId);
            case SASL_HANDSHAKE:
                return SaslHandshakeRequest.parse(buffer, versionId);
            case API_VERSIONS:
                return ApiVersionsRequest.parse(buffer, versionId);
            default:
                throw new AssertionError(String.format("ApiKey %s is not currently handled in `getRequest`, the " +
                        "code should be updated to do so.", apiKey));
        }
    }
    

    这块的请求类型很多,想要了解具体结构的,可以到每个类中具体看。

  • 相关阅读:
    拼接sql ()
    HttpPostedFileBase 基类
    jQuery获取Select元素
    HttpFileCollection 类使用
    C# 截取字符串——
    判断人员js
    删除PLSQL 关联表
    mongodb常用操作方法
    json返回取值操作
    idhttp请求网址中的中文输入
  • 原文地址:https://www.cnblogs.com/f-zhao/p/7837744.html
Copyright © 2011-2022 走看看