2. 进制的介绍与书写格式
为什么要学习进制?
原因:
计算机数据在底层运算的时候,都是以二进制形式
也有数据是以八进制,十进制,或者十六进制进行存储或运算,了解不同的进制,便于我们对数据的运算过程理解的更加深刻
十进制:运算规则,逢十进一,借一当十。
二进制:
介绍:二进制数据是用0和1两个数码来表示,例如0101000
进位规则是“逢二进一”,借位规则是“借一当二”。
0011+1=0100
0010-1=0001
八进制:
介绍:采用0,1,2,3,4,5,6,7八个数字,逢八进1
十六进制:
用数字0到9和字母A到F(或a到f)表示,其中:A到F表示10到15,这些称作十六进制。
不同进制的书写模式
代码 :
public class Demo1 { /* 十进制:Java中,数值默认都是10进制,不需要加任何修饰。 二进制:数值前面以0b开头,b大小写都可以。 八进制:数值前面以0开头。 十六进制:数值前面以0x开头,x大小写都可以。 注意: 书写的时候, 虽然加入了进制的标识, 但打印在控制台展示的都是十进制数据. */ public static void main(String[] args) { System.out.println(10); System.out.println("二进制数据0b10的十进制表示为:" + 0b10); System.out.println("八进制数据010的十进制表示为:" + 010); System.out.println("十六进制数据0x10的十进制表示为:" + 0x10); } }
以上内容都是jdk版本7之后才被执行
系数:每一【位】上的数
基数:几进制,就是几
权:从数值的右侧,以0开始,逐个+1增加
十六进制到十进制的转换
总结:任意进制到十进制的转换
公式:系数*基数的权次幂相加
系数:每一【位】上的数
基数:几进制,就是几
权:从数值的右侧,以0开始,逐个+1增加
进制转换
十进制到二进制的转换
需求:将十进制数字11,转换为2进制。
实现方式:源数据为11,使用11不断的除以基数,也就是2,直到商为0。
十进制到十六进制的转换
公式:除基取余
使用源数据,不断的除以基数(几进制,基数就是几)得到余数,直到商为0,再将余数倒着拼起来即可。
需求:将十进制数字60,转换为16进制。
实现方式:源数据为60,使用60不断的除以基数,也就是16,直到商为0。
结论:十进制到任意进制的转换
公式:除基取余使用源数据,不断的除以基数(几进制,基数就是几)得到余数,直到商为0,再将余数倒着 拼起来即可
2.4 快速进制转换法
8421码:
8421码又称BCD码,是BCD代码中最常用的一种BCD: (Binary-Coded Decimal) 二进制码十进制数
在这种编码方式中,每一位二进制值的1都是代表一个固定数值,把每一位的1代表的十进制数加起来得到的结果就是它所代表的十进制数。
二进制快速转八进制
八进制:将三个二进制位看成一组,在进行转换
原因:八进制逢八进一,三个二进制位最多可以表示111,也就是数值7,如果出现第四位,就超范围了
二进制快速转十六进制
十六进制:将四个二进制位堪为一组,在进行转换
原因:十六进制逢十六进一,四个二进制位最多可以表示1111,也就是数值15,如果出现第五位。就超出范围了
需求:将60的二进制0b111100转换位十六进制
原码 :(可直观看出数据大小)
就是二进制定点表示法,即最高位为符号位,【0】表示正,【1】表示负,其余位表示数值的大小。
通过一个字节表示+7和-7,代码:byte b1 = 7; byte b2 = -7;一个字节等于8个比特位,也就是8个二进制位
0(符号位) 0000111
1(符号位) 0000111
反码 : 正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码 : (数据以该状态进行运算)
正数的补码与其原码相同;负数的补码是在其反码的末位加1。
原码反码补码介绍
正数的原反补都是相同的
负数的【反码】,是根据【原码】取反(0变1,1变0)得到的(符号位不变)
负数的【补码】,是根据【反码】的末尾+1,得到的
package com.itheima.demo; public class Demo2 { /* 位运算: 位运算符指的是二进制位的运算,先将十进制数转成二进制后再进行运算。 在二进制位运算中,1表示true,0表示false。 & 位与 : 遇false则false, 遇0则0 00000000 00000000 00000000 00000110 // 6的二进制 & 00000000 00000000 00000000 00000010 // 2的二进制 ----------------------------------------- 00000000 00000000 00000000 00000010 // 结果: 2 | 位或 : 遇true则true, 遇1则1 ^ 位异或 : 相同为false, 不同为true ~ 取反 : 全部取反, 0变1, 1变0 (也包括符号位) 00000000 00000000 00000000 00000110 // 6的二进制补码 ~ 11111111 11111111 11111111 11111001 - 1 // -1求反码 ------------------------------------ 11111111 11111111 11111111 11111000 // 反码推原码 10000000 00000000 00000000 00000111 // -7 */ public static void main(String[] args) { System.out.println(6 & 2); System.out.println(~6); } }
2.7 位运算-位移运算符
位运算概述 : 位运算符指的是二进制位的运算,先将十进制数转成二进制后再进行运算。在二进制位运算中,1表示true,0表示false。
package com.itheima.demo;
public class Demo3 {
/*
位移运算符:
<< 有符号左移运算,二进制位向左移动, 左边符号位丢弃, 右边补齐0
运算规律: 向左移动几位, 就是乘以2的几次幂
12 << 2
(0)0000000 00000000 00000000 000011000 // 12的二进制
-----------------------------------------------------------------------------
>> 有符号右移运算,二进制位向右移动, 使用符号位进行补位
运算规律: 向右移动几位, 就是除以2的几次幂
000000000 00000000 00000000 0000001(1) // 3的二进制
-----------------------------------------------------------------------------
>>> 无符号右移运算符, 无论符号位是0还是1,都补0
010000000 00000000 00000000 00000110 // -6的二进制
*/
public static void main(String[] args) {
System.out.println(12 << 1); // 24
System.out.println(12 << 2); // 48
}
}
^ 运算符的特点
一个数, 被另外一个数, 异或两次, 该数本身不变
public class Demo4 { public static void main(String[] args) { System.out.println(10 ^ 5 ^ 10); } }
3.基础练习
3.1 数据交换
案例需求
已知两个整数变量a = 10,b = 20,使用程序实现这两个变量的数据交换
最终输出a = 20,b = 10;
代码实现
public class Test1 { /* 思路: 1. 定义一个三方变量temp,将a原本记录的值,交给temp记录 (a的值,不会丢了) 2. 使用 a 变量记录 b 的值,(第一步交换完毕,b的值也丢不了了) 3. 使用 b 变量记录 temp的值,也就是a原本的值 (交换完毕) 4. 输出 a 和 b 变量即可 */ /* 动态初始化格式: 数据类型[][] 变量名 = new 数据类型[m][n]; m表示这个二维数组,可以存放多少个一维数组 n表示每一个一维数组,可以存放多少个元素 */ public static void main(String[] args) { int a = 10; int b = 20; // 将a原本记录的值,交给temp记录 (a的值,不会丢了) int temp = a; // 用 a 变量记录 b 的值,(第一步交换完毕,b的值也丢不了了) a = b; // 使用 b 变量记录 temp的值,也就是a原本的值 (交换完毕) b = temp; // 输出 a 和 b 变量即可 System.out.println("a=" + a); System.out.println("b=" + b); } }
面试准备
// 需求:已知两个整数变量a = 10,b = 20,使用程序实现这两个变量的数据交换
// 最终输出a = 20,b = 10;
//不允许使用三方变量
public class Demo1 {
public static void main(String[] args) {
int a=10;
int b=20;
a=a^b;
b=a^b;
a=a^b;
System.out.println(a);
System.out.println(b);
}
}
3.2 数组反转【应用】
案例需求 :
已知一个数组 arr = {19, 28, 37, 46, 50}; 用程序实现把数组中的元素值交换,
交换后的数组 arr = {50, 46, 37, 28, 19}; 并在控制台输出交换后的数组元素
实现步骤 :
-
定义两个变量, start和end来表示开始和结束的指针.
-
确定交换条件, start < end 允许交换
-
循环中编写交换逻辑代码
-
每一次交换完成, 改变两个指针所指向的索引 start++, end--
-
循环结束后, 遍历数组并打印, 查看反转后的数组
代码实现 :
public class Test2 { /* 需求:已知一个数组 arr = {19, 28, 37, 46, 50}; 用程序实现把数组中的元素值交换, 交换后的数组 arr = {50, 46, 37, 28, 19}; 并在控制台输出交换后的数组元素。 步骤: 1. 定义两个变量, start和end来表示开始和结束的指针. 2. 确定交换条件, start < end 允许交换 3. 循环中编写交换逻辑代码 4. 每一次交换完成, 改变两个指针所指向的索引 start++, end-- 5. 循环结束后, 遍历数组并打印, 查看反转后的数组 */ public static void main(String[] args) { int[] arr = {19, 28, 37, 46, 50}; // 1. 定义两个变量, start和end来表示开始和结束的指针. int start = 0; int end = arr.length -1; // 2. 确定交换条件, start < end 允许交换 // 4. 每一次交换完成, 改变两个指针所指向的索引 start++, end-- // for(int start = 0, end = arr.length -1; start < end; start++, end--) for( ; start < end; start++, end--){ // 3. 循环中编写交换逻辑代码 int temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; }
System.out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i==arr.length-1){
System.out.print(arr[i]);
}else{
System.out.print(arr[i]+",");
}
}
System.out.println("]");
}
}
概述 : 二维数组也是一种容器,不同于一维数组,该容器存储的都是一维数组容器
为什么要有二维数组?
某公司季度,和月份统计的数据如下:单位(万元)
第一季度:226644
第二季度:773388
第三季度:254565
第四季度:116699
动态初始化格式: 数据类型[][] 变量名 = new 数据类型[m][n]; m表示这个二维数组,可以存放多少个一维数组 n表示每一个一维数组,可以存放多少个元素
范例:int[][]arr=new int [2][3];
格式2:数据类型 变量名[] []; 范例:int arr [] [];
格式3:数据类型[] 变量名[]; 范例:int[] arr[];
public interface Demo1Array { /* 动态初始化格式: 数据类型[][] 变量名 = new 数据类型[m][n]; m表示这个二维数组,可以存放多少个一维数组 n表示每一个一维数组,可以存放多少个元素*/ public static void main(String[] args) { // 数据类型[][] 变量名 = new 数据类型[m][n]; int[][] arr = new int[3][3]; /* [[I@10f87f48 @ : 分隔符 10f87f48 : 十六进制内存地址 I : 数组中存储的数据类型 [[ : 几个中括号就代表的是几维数组 */ System.out.println(arr); /* 二维数组存储一维数组的时候, 存储的是一维数组的内存地址 */ System.out.println(arr[0]); System.out.println(arr[1]); System.out.println(arr[2]); System.out.println(arr[0][0]); System.out.println(arr[1][1]); System.out.println(arr[2][2]); // 向二维数组中存储元素 arr[0][0] = 11; arr[0][1] = 22; arr[0][2] = 33; arr[1][0] = 11; arr[1][1] = 22; arr[1][2] = 33; arr[2][0] = 11; arr[2][1] = 22; arr[2][2] = 33; // 从二维数组中取出元素并打印 System.out.println(arr[0][0]); System.out.println(arr[0][1]); System.out.println(arr[0][2]); System.out.println(arr[1][0]); System.out.println(arr[1][1]); System.out.println(arr[1][2]); System.out.println(arr[2][0]); System.out.println(arr[2][1]); System.out.println(arr[2][2]); } }
问题 : 二维数组中存储的是一维数组, 那能不能存入 [提前创建好的一维数组] 呢 ?
答 : 可以的
代码实现
public class Demo2Array { /* 问题: 二维数组中存储的是一维数组, 那能不能存入 [提前创建好的一维数组] 呢 ? */ public static void main(String[] args) { int[] arr1 = {11,22,33}; int[] arr2 = {44,55,66}; int[] arr3 = {77,88,99,100};//内存地址的替换 int[][] arr = new int[3][3]; // arr[2][3] = 100; arr[0] = arr1; arr[1] = arr2; arr[2] = arr3; System.out.println(arr[1][2]); System.out.println(arr[2][3]); } }
3.6 二维数组静态初始化
完整格式 : 数据类型
范例: int[][] arr = new int[]][{{11,22}, {44,55}};
简化格式 : 数据类型
代码实现 :
public class Demo3Array {
/*
完整格式:数据类型[][] 变量名 = new 数据类型[][]{ {元素1, 元素2...} , {元素1, 元素2...} ...};
简化格式: 数据类型[][] 变量名 = { {元素1, 元素2...} , {元素1, 元素2...} ...};
*/
public static void main(String[] args) {
int[] arr1 = {11,22,33};
int[] arr2 = {44,55,66};
int[][] arr = {{11,22,33}, {44,55,66}};
System.out.println(arr[0][2]);
int[][] array = {arr1,arr2};//也没问题
System.out.println(array[0][2]);
}
}
3.7 二维数组遍历
需求 :
已知一个二维数组 arr = {{11, 22, 33}, {33, 44, 55}};
遍历该数组,取出所有元素并打印
步骤 :
-
遍历二维数组,取出里面每一个一维数组
-
在遍历的过程中,对每一个一维数组继续完成遍历,获取内部存储的每一个元素
代码实现 :
public class Test1 { /* 步骤: 1. 遍历二维数组,取出里面每一个一维数组 2. 在遍历的过程中,对每一个一维数组继续完成遍历,获取内部存储的每一个元素 */ public static void main(String[] args) { int[][] arr = {{11, 22, 33}, {33, 44, 55}}; // 1. 遍历二维数组,取出里面每一个一维数组 for (int i = 0; i < arr.length; i++) { //System.out.println(arr[i]); // 2. 在遍历的过程中,对每一个一维数组继续完成遍历,获取内部存储的每一个元素 //int[] temp = arr[i]; for (int j = 0; j < arr[i].length; j++) { System.out.println(arr[i][j]); } } } }
3.8 二维数组求和
案例:公司年销售额求和
需求 :
某公司季度和月份统计的数据如下:单位(万元)
第一季度:22,66,44
第二季度:77,33,88
第三季度:25,45,65
第四季度:11,66,99
步骤 :
-
定义求和变量,准备记录最终累加结果
-
使用二维数组来存储数据,每个季度是一个一维数组,再将4个一维数组装起来
-
遍历二维数组,获取所有元素,累加求和
-
输出最终结果
代码实现 :
public class Test2 { /* 步骤: 1. 定义求和变量,准备记录最终累加结果 2. 使用二维数组来存储数据,每个季度是一个一维数组,再将4个一维数组装起来 3. 遍历二维数组,获取所有元素,累加求和 4. 输出最终结果 */ public static void main(String[] args) { // 1. 定义求和变量,准备记录最终累加结果 int sum = 0; // 2. 使用二维数组来存储数据,每个季度是一个一维数组,再将4个一维数组装起来 int[][] arr = { {22,66,44} , {77,33,88} , {25,45,65} , {11,66,99}}; // 3. 遍历二维数组,获取所有元素,累加求和 for (int i = 0; i < arr.length; i++) { for(int j = 0; j < arr[i].length; j++){ sum += arr[i][j]; } } // 4. 输出最终结果 System.out.println(sum);//641 } }