zoukankan      html  css  js  c++  java
  • tensorflow搭建神经网络

    最简单的神经网络

     1 import tensorflow as tf
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 date = np.linspace(1, 15, 15)# d定义日期
     6 endPrice = np.array([2511.90, 2538.26, 2510.68, 2591.66, 2732.98, 2701.69, 2701.29, 2678.67, 2726.50, 2681.50, 2739.17, 2715.07, 2823.58, 2864.90, 2919.08])
     7 beginPrice = np.array([2438.71, 2500.88, 2534.95, 2512.52, 2594.04, 2743.26, 2697.47, 2695.24, 2678.23, 2722.13, 2674.93, 2744.13, 2717.46, 2832.73, 2877.40])
     8 # print(date)
     9 plt.figure()
    10 
    11 for i in range(0, 15):
    12     dataOne = np.zeros([2])
    13     dataOne[0] = i
    14     dataOne[1] = i
    15     priceOne = np.zeros([2])
    16     priceOne[0] = beginPrice[i]
    17     priceOne[1] = endPrice[i]
    18     if endPrice[i] > beginPrice[i]:
    19         plt.plot(dataOne, priceOne, 'r', lw=8)
    20     else:
    21         plt.plot(dataOne, priceOne, 'g', lw=8)    
    22 # plt.show()
    23 # 归一化处理
    24 dateNormal = np.zeros([15,1])
    25 PriceNormal  = np.zeros([15,1])
    26 for i in range(0,15):
    27     dateNormal[i] = i/14.0
    28     PriceNormal[i] = endPrice[i]/3000.0
    29 # print(dateNormal)
    30 # print('
    ')
    31 # print(PriceNormal)
    32 x = tf.placeholder(tf.float32, [None, 1])
    33 y = tf.placeholder(tf.float32, [None, 1])
    34 
    35  # B 第一层
    36 w1 = tf.Variable(tf.random_uniform([1, 10], 0, 1))
    37 b1 = tf.Variable(tf.zeros([1, 10]))
    38 wb1 = tf.matmul(x, w1) + b1
    39 layer1 = tf.nn.relu(wb1)# 激励函数
    40 
    41 # 第二层
    42 w2 = tf.Variable(tf.random_uniform([10,1], 0, 1))
    43 b2 = tf.Variable(tf.zeros([15, 1]))
    44 wb2 = tf.matmul(layer1, w2) + b2
    45 layer2 = tf.nn.relu(wb2)# 激励函数
    46 
    47 # loss
    48 loss = tf.reduce_mean(tf.square(y-layer2))
    49 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    50 with tf.Session() as sess:
    51     sess.run(tf.global_variables_initializer())
    52     for i in range(0, 100000):
    53         sess.run(train_step, feed_dict={x:dateNormal, y:PriceNormal})
    54     pred = sess.run(layer2, feed_dict={x:dateNormal})
    55     predPrice = np.zeros([15, 1])
    56     for i in range(0, 15):
    57         predPrice[i] = (pred * 3000)[i]
    58     plt.plot(date, predPrice, 'b', lw=2)
    59 plt.show()

     

  • 相关阅读:
    POJ 3169 Layout(差分约束+链式前向星+SPFA)
    HDU 2680 Choose the best route(SPFA)
    PAT L2-016 愿天下有情人都是失散多年的兄妹(深搜)
    PAT L2-013 红色警报(并查集求连通子图)
    PAT L2-014 列车调度(最长上升nlogn)
    PAT L3-010 是否完全二叉搜索树(二叉搜索树)
    HRBUST 2310 Tree Painting(无向图欧拉路径的性质)
    POJ 2230 Watchcow(有向图欧拉回路)
    UVa 10054 The Necklace(无向图欧拉回路)
    UVa 1600 Patrol Robot(三维广搜)
  • 原文地址:https://www.cnblogs.com/faithyiyo/p/11142027.html
Copyright © 2011-2022 走看看