zoukankan      html  css  js  c++  java
  • 二项分布

    定义

    20201116000339

    二项分布的期望和方差

    期望

    [EX = np ]

    证明

    (X sim B(n,p)), 求 (EX).

    [EX = sum_{K = 0}^{n}x_kp_k = sum_{k = 0}^{n}kC_n^kp^k(1 - p)^{n - k} = sum_{k = 1}^{n}kdisplaystylefrac{n!}{k!(n - k)!}p^k(1 - p)^{n - k} ]

    [= npsum_{k = 1}^{n}C_{n - 1}^{k - 1}p^{k - 1}(1 - p)^{n - k} = npsum_{k = 0}^{n - 1}C_{n - 1}^kp^k(1 - p)^{n - 1 - k} ]

    [= np[p + (1 - p)]^{n - 1} = np, qquadqquadqquadqquadqquadqquadquad ]

    (EX = np).

    方差

    [DX = np(1 - p) ]

    证明

    (X sim B(n, p)), 求 (DX).

    [EX^2 = sum_{k = 0}^{n}x_k^2p_k = sum_{k = 0}^{n}k^2C_n^kp^k(1 - p)^{n - k} = sum_{k = 1}^{n}kdisplaystylefrac{n!}{(k - 1)!(n - k)!}p^k(1 -p)^{n - k} ]

    [= sum_{k = 1}^{n}(k - 1)displaystylefrac{n!}{(k - 1)!(n - k)!}p^k(1 - p)^{n - k} + sum_{k = 1}^{n}displaystylefrac{n!}{(k - 1)!(n - k)!}p^k(1 - p)^{n - k} ]

    [= np[(n - 1)p + 1], qquadqquadqquadqquadqquadqquadqquadqquadqquadqquadqquadqquadquad ]

    (1 - p = q), 由 (DX = EX^2 - (EX)^2) 可得

    [DX = npq. ]

  • 相关阅读:
    AGC 014 B
    AGC 012 D
    AGC 012 C
    python
    Linux
    Linux
    Linux
    Linux 之 光标消失隐藏术
    Linux
    python
  • 原文地址:https://www.cnblogs.com/fanlumaster/p/13983180.html
Copyright © 2011-2022 走看看