zoukankan      html  css  js  c++  java
  • android 开发 对图片编码,并生成gif图片

    demo场景:

    将2张静态的png格式图片组合生成一个gif图片,间隔500毫秒,关键类:AnimatedGifEncoder

    如需要解析gif获取每帧的图片,可参考上一篇博客:《android 开发 解码gif图片,获取每帧bitmap》

    使用方法:

    /**
         * 生成gif图片
         */
        void makeGif()
        {
            String path = Environment.getExternalStorageDirectory().getAbsolutePath() +"/data/data/"+ this.getPackageName()+"/cache";
            Bitmap bmp1 = BitmapFactory.decodeResource(getResources(), R.drawable.gif10); //png格式资源图片
            Bitmap bmp2 = BitmapFactory.decodeResource(getResources(), R.drawable.gif13);//png格式资源图片
            File pathFile = new File(path);
            File gifFile = new File(pathFile,"add_1.gif");
            if(!pathFile.exists())
                pathFile.mkdirs();
            if(!gifFile.exists())
                try {
                    gifFile.createNewFile();
                } catch (IOException e1) {
                    // TODO Auto-generated catch block
                    e1.printStackTrace();
                }
            OutputStream os;
            try {
                os = new FileOutputStream(gifFile);
                gifEncoder.start(os);  //注意顺序
                gifEncoder.addFrame(bmp1);
                gifEncoder.addFrame(bmp2);
                gifEncoder.setDelay(500);
                gifEncoder.setRepeat(0);
                gifEncoder.finish();  
            } catch (FileNotFoundException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }


    关键的编码gif代码:

    import java.io.IOException;
    import java.io.OutputStream;
    
    import android.graphics.Bitmap;
    import android.graphics.Bitmap.Config;
    import android.graphics.Canvas;
    import android.graphics.Paint;
    
    public class AnimatedGifEncoder {
    
          protected int width; // image size
    
          protected int height;
          
          protected int x = 0;
          
          protected int y = 0;
    
          protected int transparent = -1; // transparent color if given
    
          protected int transIndex; // transparent index in color table
    
          protected int repeat = -1; // no repeat
    
          protected int delay = 0; // frame delay (hundredths)
    
          protected boolean started = false; // ready to output frames
    
          protected OutputStream out;
    
          protected Bitmap image; // current frame
    
          protected byte[] pixels; // BGR byte array from frame
    
          protected byte[] indexedPixels; // converted frame indexed to palette
    
          protected int colorDepth; // number of bit planes
    
          protected byte[] colorTab; // RGB palette
    
          protected boolean[] usedEntry = new boolean[256]; // active palette entries
    
          protected int palSize = 7; // color table size (bits-1)
    
          protected int dispose = -1; // disposal code (-1 = use default)
    
          protected boolean closeStream = false; // close stream when finished
    
          protected boolean firstFrame = true;
    
          protected boolean sizeSet = false; // if false, get size from first frame
    
          protected int sample = 10; // default sample interval for quantizer
    
          /**
           * Sets the delay time between each frame, or changes it for subsequent frames
           * (applies to last frame added).
           * 
           * @param ms
           *          int delay time in milliseconds
           */
          public void setDelay(int ms) {
            delay = ms / 10;
          }
    
          /**
           * Sets the GIF frame disposal code for the last added frame and any
           * subsequent frames. Default is 0 if no transparent color has been set,
           * otherwise 2.
           * 
           * @param code
           *          int disposal code.
           */
          public void setDispose(int code) {
            if (code >= 0) {
              dispose = code;
            }
          }
    
          /**
           * Sets the number of times the set of GIF frames should be played. Default is
           * 1; 0 means play indefinitely. Must be invoked before the first image is
           * added.
           * 
           * @param iter
           *          int number of iterations.
           * @return
           */
          public void setRepeat(int iter) {
            if (iter >= 0) {
              repeat = iter;
            }
          }
    
          /**
           * Sets the transparent color for the last added frame and any subsequent
           * frames. Since all colors are subject to modification in the quantization
           * process, the color in the final palette for each frame closest to the given
           * color becomes the transparent color for that frame. May be set to null to
           * indicate no transparent color.
           * 
           * @param c
           *          Color to be treated as transparent on display.
           */
          public void setTransparent(int c) {
            transparent = c;
          }
    
          /**
           * Adds next GIF frame. The frame is not written immediately, but is actually
           * deferred until the next frame is received so that timing data can be
           * inserted. Invoking <code>finish()</code> flushes all frames. If
           * <code>setSize</code> was not invoked, the size of the first image is used
           * for all subsequent frames.
           * 
           * @param im
           *          BufferedImage containing frame to write.
           * @return true if successful.
           */
          public boolean addFrame(Bitmap im) {
            if ((im == null) || !started) {
              return false;
            }
            boolean ok = true;
            try {
              if (!sizeSet) {
                // use first frame's size
                setSize(im.getWidth(), im.getHeight());
              }
              image = im;
              getImagePixels(); // convert to correct format if necessary
              analyzePixels(); // build color table & map pixels
              if (firstFrame) {
                writeLSD(); // logical screen descriptior
                writePalette(); // global color table
                if (repeat >= 0) {
                  // use NS app extension to indicate reps
                  writeNetscapeExt();
                }
              }
              writeGraphicCtrlExt(); // write graphic control extension
              writeImageDesc(); // image descriptor
              if (!firstFrame) {
                writePalette(); // local color table
              }
              writePixels(); // encode and write pixel data
              firstFrame = false;
            } catch (IOException e) {
              ok = false;
            }
    
            return ok;
          }
    
          /**
           * Flushes any pending data and closes output file. If writing to an
           * OutputStream, the stream is not closed.
           */
          public boolean finish() {
            if (!started)
              return false;
            boolean ok = true;
            started = false;
            try {
              out.write(0x3b); // gif trailer
              out.flush();
              if (closeStream) {
                out.close();
              }
            } catch (IOException e) {
              ok = false;
            }
    
            // reset for subsequent use
            transIndex = 0;
            out = null;
            image = null;
            pixels = null;
            indexedPixels = null;
            colorTab = null;
            closeStream = false;
            firstFrame = true;
    
            return ok;
          }
    
          /**
           * Sets frame rate in frames per second. Equivalent to
           * <code>setDelay(1000/fps)</code>.
           * 
           * @param fps
           *          float frame rate (frames per second)
           */
          public void setFrameRate(float fps) {
            if (fps != 0f) {
              delay = (int)(100 / fps);
            }
          }
    
          /**
           * Sets quality of color quantization (conversion of images to the maximum 256
           * colors allowed by the GIF specification). Lower values (minimum = 1)
           * produce better colors, but slow processing significantly. 10 is the
           * default, and produces good color mapping at reasonable speeds. Values
           * greater than 20 do not yield significant improvements in speed.
           * 
           * @param quality
           *          int greater than 0.
           * @return
           */
          public void setQuality(int quality) {
            if (quality < 1)
              quality = 1;
            sample = quality;
          }
    
          /**
           * Sets the GIF frame size. The default size is the size of the first frame
           * added if this method is not invoked.
           * 
           * @param w
           *          int frame width.
           * @param h
           *          int frame width.
           */
          public void setSize(int w, int h) {
            width = w;
            height = h;
            if (width < 1)
              width = 320;
            if (height < 1)
              height = 240;
            sizeSet = true;
          }
          
          /**
           * Sets the GIF frame position. The position is 0,0 by default.
           * Useful for only updating a section of the image
           * 
           * @param w
           *          int frame width.
           * @param h
           *          int frame width.
           */
          public void setPosition(int x, int y) {
             this.x = x;
             this.y = y;
          }
    
          /**
           * Initiates GIF file creation on the given stream. The stream is not closed
           * automatically.
           * 
           * @param os
           *          OutputStream on which GIF images are written.
           * @return false if initial write failed.
           */
          public boolean start(OutputStream os) {
            if (os == null)
              return false;
            boolean ok = true;
            closeStream = false;
            out = os;
            try {
              writeString("GIF89a"); // header
            } catch (IOException e) {
              ok = false;
            }
            return started = ok;
          }
    
          /**
           * Analyzes image colors and creates color map.
           */
          protected void analyzePixels() {
            int len = pixels.length;
            int nPix = len / 3;
            indexedPixels = new byte[nPix];
            NeuQuant nq = new NeuQuant(pixels, len, sample);
            // initialize quantizer
            colorTab = nq.process(); // create reduced palette
            // convert map from BGR to RGB
            for (int i = 0; i < colorTab.length; i += 3) {
              byte temp = colorTab[i];
              colorTab[i] = colorTab[i + 2];
              colorTab[i + 2] = temp;
              usedEntry[i / 3] = false;
            }
            // map image pixels to new palette
            int k = 0;
            for (int i = 0; i < nPix; i++) {
              int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
              usedEntry[index] = true;
              indexedPixels[i] = (byte) index;
            }
            pixels = null;
            colorDepth = 8;
            palSize = 7;
            // get closest match to transparent color if specified
            if (transparent != -1) {
              transIndex = findClosest(transparent);
            }
          }
    
          /**
           * Returns index of palette color closest to c
           * 
           */
          protected int findClosest(int c) {
            if (colorTab == null)
              return -1;
            int r = (c >> 16) & 0xff;
            int g = (c >> 8) & 0xff;
            int b = (c >> 0) & 0xff;
            int minpos = 0;
            int dmin = 256 * 256 * 256;
            int len = colorTab.length;
            for (int i = 0; i < len;) {
              int dr = r - (colorTab[i++] & 0xff);
              int dg = g - (colorTab[i++] & 0xff);
              int db = b - (colorTab[i] & 0xff);
              int d = dr * dr + dg * dg + db * db;
              int index = i / 3;
              if (usedEntry[index] && (d < dmin)) {
                dmin = d;
                minpos = index;
              }
              i++;
            }
            return minpos;
          }
    
          /**
           * Extracts image pixels into byte array "pixels"
           */
          protected void getImagePixels() {
            int w = image.getWidth();
            int h = image.getHeight();
            if ((w != width) || (h != height)) {
              // create new image with right size/format
              Bitmap temp = Bitmap.createBitmap(width, height, Config.RGB_565);
              Canvas g = new Canvas(temp);
              g.drawBitmap(image, 0, 0, new Paint());
              image = temp;
            }
            int[] data = getImageData(image);
            pixels = new byte[data.length * 3];
            for (int i = 0; i < data.length; i++) {
                int td = data[i];
                int tind = i * 3;
                pixels[tind++] = (byte) ((td >> 0) & 0xFF);
                pixels[tind++] = (byte) ((td >> 8) & 0xFF);
                pixels[tind] = (byte) ((td >> 16) & 0xFF);
            }
          }
          protected int[] getImageData(Bitmap img) {
                int w = img.getWidth();
                int h = img.getHeight();
    
                int[] data = new int[w * h];
                img.getPixels(data, 0, w, 0, 0, w, h);
                return data;
            }
    
          /**
           * Writes Graphic Control Extension
           */
          protected void writeGraphicCtrlExt() throws IOException {
            out.write(0x21); // extension introducer
            out.write(0xf9); // GCE label
            out.write(4); // data block size
            int transp, disp;
            if (transparent == -1) {
              transp = 0;
              disp = 0; // dispose = no action
            } else {
              transp = 1;
              disp = 2; // force clear if using transparent color
            }
            if (dispose >= 0) {
              disp = dispose & 7; // user override
            }
            disp <<= 2;
    
            // packed fields
            out.write(0 | // 1:3 reserved
                disp | // 4:6 disposal
                0 | // 7 user input - 0 = none
                transp); // 8 transparency flag
    
            writeShort(delay); // delay x 1/100 sec
            out.write(transIndex); // transparent color index
            out.write(0); // block terminator
          }
    
          /**
           * Writes Image Descriptor
           */
          protected void writeImageDesc() throws IOException {
            out.write(0x2c); // image separator
            writeShort(x); // image position x,y = 0,0
            writeShort(y);
            writeShort(width); // image size
            writeShort(height);
            // packed fields
            if (firstFrame) {
              // no LCT - GCT is used for first (or only) frame
              out.write(0);
            } else {
              // specify normal LCT
              out.write(0x80 | // 1 local color table 1=yes
                  0 | // 2 interlace - 0=no
                  0 | // 3 sorted - 0=no
                  0 | // 4-5 reserved
                  palSize); // 6-8 size of color table
            }
          }
    
          /**
           * Writes Logical Screen Descriptor
           */
          protected void writeLSD() throws IOException {
            // logical screen size
            writeShort(width);
            writeShort(height);
            // packed fields
            out.write((0x80 | // 1 : global color table flag = 1 (gct used)
                0x70 | // 2-4 : color resolution = 7
                0x00 | // 5 : gct sort flag = 0
                palSize)); // 6-8 : gct size
    
            out.write(0); // background color index
            out.write(0); // pixel aspect ratio - assume 1:1
          }
    
          /**
           * Writes Netscape application extension to define repeat count.
           */
          protected void writeNetscapeExt() throws IOException {
            out.write(0x21); // extension introducer
            out.write(0xff); // app extension label
            out.write(11); // block size
            writeString("NETSCAPE" + "2.0"); // app id + auth code
            out.write(3); // sub-block size
            out.write(1); // loop sub-block id
            writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
            out.write(0); // block terminator
          }
    
          /**
           * Writes color table
           */
          protected void writePalette() throws IOException {
            out.write(colorTab, 0, colorTab.length);
            int n = (3 * 256) - colorTab.length;
            for (int i = 0; i < n; i++) {
              out.write(0);
            }
          }
    
          /**
           * Encodes and writes pixel data
           */
          protected void writePixels() throws IOException {
            LZWEncoder encoder = new LZWEncoder(width, height, indexedPixels, colorDepth);
            encoder.encode(out);
          }
    
          /**
           * Write 16-bit value to output stream, LSB first
           */
          protected void writeShort(int value) throws IOException {
            out.write(value & 0xff);
            out.write((value >> 8) & 0xff);
          }
    
          /**
           * Writes string to output stream
           */
          protected void writeString(String s) throws IOException {
            for (int i = 0; i < s.length(); i++) {
              out.write((byte) s.charAt(i));
            }
          }
        }
    
        /*
         * NeuQuant Neural-Net Quantization Algorithm
         * ------------------------------------------
         * 
         * Copyright (c) 1994 Anthony Dekker
         * 
         * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
         * "Kohonen neural networks for optimal colour quantization" in "Network:
         * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
         * the algorithm.
         * 
         * Any party obtaining a copy of these files from the author, directly or
         * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
         * world-wide, paid up, royalty-free, nonexclusive right and license to deal in
         * this software and documentation files (the "Software"), including without
         * limitation the rights to use, copy, modify, merge, publish, distribute,
         * sublicense, and/or sell copies of the Software, and to permit persons who
         * receive copies from any such party to do so, with the only requirement being
         * that this copyright notice remain intact.
         */
    
    //     Ported to Java 12/00 K Weiner
        class NeuQuant {
    
          protected static final int netsize = 256; /* number of colours used */
    
          /* four primes near 500 - assume no image has a length so large */
          /* that it is divisible by all four primes */
          protected static final int prime1 = 499;
    
          protected static final int prime2 = 491;
    
          protected static final int prime3 = 487;
    
          protected static final int prime4 = 503;
    
          protected static final int minpicturebytes = (3 * prime4);
    
          /* minimum size for input image */
    
          /*
           * Program Skeleton ---------------- [select samplefac in range 1..30] [read
           * image from input file] pic = (unsigned char*) malloc(3*width*height);
           * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
           * image header, using writecolourmap(f)] inxbuild(); write output image using
           * inxsearch(b,g,r)
           */
    
          /*
           * Network Definitions -------------------
           */
    
          protected static final int maxnetpos = (netsize - 1);
    
          protected static final int netbiasshift = 4; /* bias for colour values */
    
          protected static final int ncycles = 100; /* no. of learning cycles */
    
          /* defs for freq and bias */
          protected static final int intbiasshift = 16; /* bias for fractions */
    
          protected static final int intbias = (((int) 1) << intbiasshift);
    
          protected static final int gammashift = 10; /* gamma = 1024 */
    
          protected static final int gamma = (((int) 1) << gammashift);
    
          protected static final int betashift = 10;
    
          protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
    
          protected static final int betagamma = (intbias << (gammashift - betashift));
    
          /* defs for decreasing radius factor */
          protected static final int initrad = (netsize >> 3); /*
                                                                 * for 256 cols, radius
                                                                 * starts
                                                                 */
    
          protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
    
          protected static final int radiusbias = (((int) 1) << radiusbiasshift);
    
          protected static final int initradius = (initrad * radiusbias); /*
                                                                           * and
                                                                           * decreases
                                                                           * by a
                                                                           */
    
          protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
    
          /* defs for decreasing alpha factor */
          protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
    
          protected static final int initalpha = (((int) 1) << alphabiasshift);
    
          protected int alphadec; /* biased by 10 bits */
    
          /* radbias and alpharadbias used for radpower calculation */
          protected static final int radbiasshift = 8;
    
          protected static final int radbias = (((int) 1) << radbiasshift);
    
          protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
    
          protected static final int alpharadbias = (((int) 1) << alpharadbshift);
    
          /*
           * Types and Global Variables --------------------------
           */
    
          protected byte[] thepicture; /* the input image itself */
    
          protected int lengthcount; /* lengthcount = H*W*3 */
    
          protected int samplefac; /* sampling factor 1..30 */
    
          // typedef int pixel[4]; /* BGRc */
          protected int[][] network; /* the network itself - [netsize][4] */
    
          protected int[] netindex = new int[256];
    
          /* for network lookup - really 256 */
    
          protected int[] bias = new int[netsize];
    
          /* bias and freq arrays for learning */
          protected int[] freq = new int[netsize];
    
          protected int[] radpower = new int[initrad];
    
          /* radpower for precomputation */
    
          /*
           * Initialise network in range (0,0,0) to (255,255,255) and set parameters
           * -----------------------------------------------------------------------
           */
          public NeuQuant(byte[] thepic, int len, int sample) {
    
            int i;
            int[] p;
    
            thepicture = thepic;
            lengthcount = len;
            samplefac = sample;
    
            network = new int[netsize][];
            for (i = 0; i < netsize; i++) {
              network[i] = new int[4];
              p = network[i];
              p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
              freq[i] = intbias / netsize; /* 1/netsize */
              bias[i] = 0;
            }
          }
    
          public byte[] colorMap() {
            byte[] map = new byte[3 * netsize];
            int[] index = new int[netsize];
            for (int i = 0; i < netsize; i++)
              index[network[i][3]] = i;
            int k = 0;
            for (int i = 0; i < netsize; i++) {
              int j = index[i];
              map[k++] = (byte) (network[j][0]);
              map[k++] = (byte) (network[j][1]);
              map[k++] = (byte) (network[j][2]);
            }
            return map;
          }
    
          /*
           * Insertion sort of network and building of netindex[0..255] (to do after
           * unbias)
           * -------------------------------------------------------------------------------
           */
          public void inxbuild() {
    
            int i, j, smallpos, smallval;
            int[] p;
            int[] q;
            int previouscol, startpos;
    
            previouscol = 0;
            startpos = 0;
            for (i = 0; i < netsize; i++) {
              p = network[i];
              smallpos = i;
              smallval = p[1]; /* index on g */
              /* find smallest in i..netsize-1 */
              for (j = i + 1; j < netsize; j++) {
                q = network[j];
                if (q[1] < smallval) { /* index on g */
                  smallpos = j;
                  smallval = q[1]; /* index on g */
                }
              }
              q = network[smallpos];
              /* swap p (i) and q (smallpos) entries */
              if (i != smallpos) {
                j = q[0];
                q[0] = p[0];
                p[0] = j;
                j = q[1];
                q[1] = p[1];
                p[1] = j;
                j = q[2];
                q[2] = p[2];
                p[2] = j;
                j = q[3];
                q[3] = p[3];
                p[3] = j;
              }
              /* smallval entry is now in position i */
              if (smallval != previouscol) {
                netindex[previouscol] = (startpos + i) >> 1;
                for (j = previouscol + 1; j < smallval; j++)
                  netindex[j] = i;
                previouscol = smallval;
                startpos = i;
              }
            }
            netindex[previouscol] = (startpos + maxnetpos) >> 1;
            for (j = previouscol + 1; j < 256; j++)
              netindex[j] = maxnetpos; /* really 256 */
          }
    
          /*
           * Main Learning Loop ------------------
           */
          public void learn() {
    
            int i, j, b, g, r;
            int radius, rad, alpha, step, delta, samplepixels;
            byte[] p;
            int pix, lim;
    
            if (lengthcount < minpicturebytes)
              samplefac = 1;
            alphadec = 30 + ((samplefac - 1) / 3);
            p = thepicture;
            pix = 0;
            lim = lengthcount;
            samplepixels = lengthcount / (3 * samplefac);
            delta = samplepixels / ncycles;
            alpha = initalpha;
            radius = initradius;
    
            rad = radius >> radiusbiasshift;
            if (rad <= 1)
              rad = 0;
            for (i = 0; i < rad; i++)
              radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
    
            // fprintf(stderr,"beginning 1D learning: initial radius=%d
    ", rad);
    
            if (lengthcount < minpicturebytes)
              step = 3;
            else if ((lengthcount % prime1) != 0)
              step = 3 * prime1;
            else {
              if ((lengthcount % prime2) != 0)
                step = 3 * prime2;
              else {
                if ((lengthcount % prime3) != 0)
                  step = 3 * prime3;
                else
                  step = 3 * prime4;
              }
            }
    
            i = 0;
            while (i < samplepixels) {
              b = (p[pix + 0] & 0xff) << netbiasshift;
              g = (p[pix + 1] & 0xff) << netbiasshift;
              r = (p[pix + 2] & 0xff) << netbiasshift;
              j = contest(b, g, r);
    
              altersingle(alpha, j, b, g, r);
              if (rad != 0)
                alterneigh(rad, j, b, g, r); /* alter neighbours */
    
              pix += step;
              if (pix >= lim)
                pix -= lengthcount;
    
              i++;
              if (delta == 0)
                delta = 1;
              if (i % delta == 0) {
                alpha -= alpha / alphadec;
                radius -= radius / radiusdec;
                rad = radius >> radiusbiasshift;
                if (rad <= 1)
                  rad = 0;
                for (j = 0; j < rad; j++)
                  radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
              }
            }
            // fprintf(stderr,"finished 1D learning: final alpha=%f
            // !
    ",((float)alpha)/initalpha);
          }
    
          /*
           * Search for BGR values 0..255 (after net is unbiased) and return colour
           * index
           * ----------------------------------------------------------------------------
           */
          public int map(int b, int g, int r) {
    
            int i, j, dist, a, bestd;
            int[] p;
            int best;
    
            bestd = 1000; /* biggest possible dist is 256*3 */
            best = -1;
            i = netindex[g]; /* index on g */
            j = i - 1; /* start at netindex[g] and work outwards */
    
            while ((i < netsize) || (j >= 0)) {
              if (i < netsize) {
                p = network[i];
                dist = p[1] - g; /* inx key */
                if (dist >= bestd)
                  i = netsize; /* stop iter */
                else {
                  i++;
                  if (dist < 0)
                    dist = -dist;
                  a = p[0] - b;
                  if (a < 0)
                    a = -a;
                  dist += a;
                  if (dist < bestd) {
                    a = p[2] - r;
                    if (a < 0)
                      a = -a;
                    dist += a;
                    if (dist < bestd) {
                      bestd = dist;
                      best = p[3];
                    }
                  }
                }
              }
              if (j >= 0) {
                p = network[j];
                dist = g - p[1]; /* inx key - reverse dif */
                if (dist >= bestd)
                  j = -1; /* stop iter */
                else {
                  j--;
                  if (dist < 0)
                    dist = -dist;
                  a = p[0] - b;
                  if (a < 0)
                    a = -a;
                  dist += a;
                  if (dist < bestd) {
                    a = p[2] - r;
                    if (a < 0)
                      a = -a;
                    dist += a;
                    if (dist < bestd) {
                      bestd = dist;
                      best = p[3];
                    }
                  }
                }
              }
            }
            return (best);
          }
    
          public byte[] process() {
            learn();
            unbiasnet();
            inxbuild();
            return colorMap();
          }
    
          /*
           * Unbias network to give byte values 0..255 and record position i to prepare
           * for sort
           * -----------------------------------------------------------------------------------
           */
          public void unbiasnet() {
    
            int i;
    
            for (i = 0; i < netsize; i++) {
              network[i][0] >>= netbiasshift;
              network[i][1] >>= netbiasshift;
              network[i][2] >>= netbiasshift;
              network[i][3] = i; /* record colour no */
            }
          }
    
          /*
           * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
           * radpower[|i-j|]
           * ---------------------------------------------------------------------------------
           */
          protected void alterneigh(int rad, int i, int b, int g, int r) {
    
            int j, k, lo, hi, a, m;
            int[] p;
    
            lo = i - rad;
            if (lo < -1)
              lo = -1;
            hi = i + rad;
            if (hi > netsize)
              hi = netsize;
    
            j = i + 1;
            k = i - 1;
            m = 1;
            while ((j < hi) || (k > lo)) {
              a = radpower[m++];
              if (j < hi) {
                p = network[j++];
                try {
                  p[0] -= (a * (p[0] - b)) / alpharadbias;
                  p[1] -= (a * (p[1] - g)) / alpharadbias;
                  p[2] -= (a * (p[2] - r)) / alpharadbias;
                } catch (Exception e) {
                } // prevents 1.3 miscompilation
              }
              if (k > lo) {
                p = network[k--];
                try {
                  p[0] -= (a * (p[0] - b)) / alpharadbias;
                  p[1] -= (a * (p[1] - g)) / alpharadbias;
                  p[2] -= (a * (p[2] - r)) / alpharadbias;
                } catch (Exception e) {
                }
              }
            }
          }
    
          /*
           * Move neuron i towards biased (b,g,r) by factor alpha
           * ----------------------------------------------------
           */
          protected void altersingle(int alpha, int i, int b, int g, int r) {
    
            /* alter hit neuron */
            int[] n = network[i];
            n[0] -= (alpha * (n[0] - b)) / initalpha;
            n[1] -= (alpha * (n[1] - g)) / initalpha;
            n[2] -= (alpha * (n[2] - r)) / initalpha;
          }
    
          /*
           * Search for biased BGR values ----------------------------
           */
          protected int contest(int b, int g, int r) {
    
            /* finds closest neuron (min dist) and updates freq */
            /* finds best neuron (min dist-bias) and returns position */
            /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
            /* bias[i] = gamma*((1/netsize)-freq[i]) */
    
            int i, dist, a, biasdist, betafreq;
            int bestpos, bestbiaspos, bestd, bestbiasd;
            int[] n;
    
            bestd = ~(((int) 1) << 31);
            bestbiasd = bestd;
            bestpos = -1;
            bestbiaspos = bestpos;
    
            for (i = 0; i < netsize; i++) {
              n = network[i];
              dist = n[0] - b;
              if (dist < 0)
                dist = -dist;
              a = n[1] - g;
              if (a < 0)
                a = -a;
              dist += a;
              a = n[2] - r;
              if (a < 0)
                a = -a;
              dist += a;
              if (dist < bestd) {
                bestd = dist;
                bestpos = i;
              }
              biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
              if (biasdist < bestbiasd) {
                bestbiasd = biasdist;
                bestbiaspos = i;
              }
              betafreq = (freq[i] >> betashift);
              freq[i] -= betafreq;
              bias[i] += (betafreq << gammashift);
            }
            freq[bestpos] += beta;
            bias[bestpos] -= betagamma;
            return (bestbiaspos);
          }
        }
    
    //     ==============================================================================
    //     Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
    //     K Weiner 12/00
    
        class LZWEncoder {
    
          private static final int EOF = -1;
    
          private int imgW, imgH;
    
          private byte[] pixAry;
    
          private int initCodeSize;
    
          private int remaining;
    
          private int curPixel;
    
          // GIFCOMPR.C - GIF Image compression routines
          //
          // Lempel-Ziv compression based on 'compress'. GIF modifications by
          // David Rowley (mgardi@watdcsu.waterloo.edu)
    
          // General DEFINEs
    
          static final int BITS = 12;
    
          static final int HSIZE = 5003; // 80% occupancy
    
          // GIF Image compression - modified 'compress'
          //
          // Based on: compress.c - File compression ala IEEE Computer, June 1984.
          //
          // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
          // Jim McKie (decvax!mcvax!jim)
          // Steve Davies (decvax!vax135!petsd!peora!srd)
          // Ken Turkowski (decvax!decwrl!turtlevax!ken)
          // James A. Woods (decvax!ihnp4!ames!jaw)
          // Joe Orost (decvax!vax135!petsd!joe)
    
          int n_bits; // number of bits/code
    
          int maxbits = BITS; // user settable max # bits/code
    
          int maxcode; // maximum code, given n_bits
    
          int maxmaxcode = 1 << BITS; // should NEVER generate this code
    
          int[] htab = new int[HSIZE];
    
          int[] codetab = new int[HSIZE];
    
          int hsize = HSIZE; // for dynamic table sizing
    
          int free_ent = 0; // first unused entry
    
          // block compression parameters -- after all codes are used up,
          // and compression rate changes, start over.
          boolean clear_flg = false;
    
          // Algorithm: use open addressing double hashing (no chaining) on the
          // prefix code / next character combination. We do a variant of Knuth's
          // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
          // secondary probe. Here, the modular division first probe is gives way
          // to a faster exclusive-or manipulation. Also do block compression with
          // an adaptive reset, whereby the code table is cleared when the compression
          // ratio decreases, but after the table fills. The variable-length output
          // codes are re-sized at this point, and a special CLEAR code is generated
          // for the decompressor. Late addition: construct the table according to
          // file size for noticeable speed improvement on small files. Please direct
          // questions about this implementation to ames!jaw.
    
          int g_init_bits;
    
          int ClearCode;
    
          int EOFCode;
    
          // output
          //
          // Output the given code.
          // Inputs:
          // code: A n_bits-bit integer. If == -1, then EOF. This assumes
          // that n_bits =< wordsize - 1.
          // Outputs:
          // Outputs code to the file.
          // Assumptions:
          // Chars are 8 bits long.
          // Algorithm:
          // Maintain a BITS character long buffer (so that 8 codes will
          // fit in it exactly). Use the VAX insv instruction to insert each
          // code in turn. When the buffer fills up empty it and start over.
    
          int cur_accum = 0;
    
          int cur_bits = 0;
    
          int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF,
              0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };
    
          // Number of characters so far in this 'packet'
          int a_count;
    
          // Define the storage for the packet accumulator
          byte[] accum = new byte[256];
    
          // ----------------------------------------------------------------------------
          LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
            imgW = width;
            imgH = height;
            pixAry = pixels;
            initCodeSize = Math.max(2, color_depth);
          }
    
          // Add a character to the end of the current packet, and if it is 254
          // characters, flush the packet to disk.
          void char_out(byte c, OutputStream outs) throws IOException {
            accum[a_count++] = c;
            if (a_count >= 254)
              flush_char(outs);
          }
    
          // Clear out the hash table
    
          // table clear for block compress
          void cl_block(OutputStream outs) throws IOException {
            cl_hash(hsize);
            free_ent = ClearCode + 2;
            clear_flg = true;
    
            output(ClearCode, outs);
          }
    
          // reset code table
          void cl_hash(int hsize) {
            for (int i = 0; i < hsize; ++i)
              htab[i] = -1;
          }
    
          void compress(int init_bits, OutputStream outs) throws IOException {
            int fcode;
            int i /* = 0 */;
            int c;
            int ent;
            int disp;
            int hsize_reg;
            int hshift;
    
            // Set up the globals: g_init_bits - initial number of bits
            g_init_bits = init_bits;
    
            // Set up the necessary values
            clear_flg = false;
            n_bits = g_init_bits;
            maxcode = MAXCODE(n_bits);
    
            ClearCode = 1 << (init_bits - 1);
            EOFCode = ClearCode + 1;
            free_ent = ClearCode + 2;
    
            a_count = 0; // clear packet
    
            ent = nextPixel();
    
            hshift = 0;
            for (fcode = hsize; fcode < 65536; fcode *= 2)
              ++hshift;
            hshift = 8 - hshift; // set hash code range bound
    
            hsize_reg = hsize;
            cl_hash(hsize_reg); // clear hash table
    
            output(ClearCode, outs);
    
            outer_loop: while ((c = nextPixel()) != EOF) {
              fcode = (c << maxbits) + ent;
              i = (c << hshift) ^ ent; // xor hashing
    
              if (htab[i] == fcode) {
                ent = codetab[i];
                continue;
              } else if (htab[i] >= 0) // non-empty slot
              {
                disp = hsize_reg - i; // secondary hash (after G. Knott)
                if (i == 0)
                  disp = 1;
                do {
                  if ((i -= disp) < 0)
                    i += hsize_reg;
    
                  if (htab[i] == fcode) {
                    ent = codetab[i];
                    continue outer_loop;
                  }
                } while (htab[i] >= 0);
              }
              output(ent, outs);
              ent = c;
              if (free_ent < maxmaxcode) {
                codetab[i] = free_ent++; // code -> hashtable
                htab[i] = fcode;
              } else
                cl_block(outs);
            }
            // Put out the final code.
            output(ent, outs);
            output(EOFCode, outs);
          }
    
          // ----------------------------------------------------------------------------
          void encode(OutputStream os) throws IOException {
            os.write(initCodeSize); // write "initial code size" byte
    
            remaining = imgW * imgH; // reset navigation variables
            curPixel = 0;
    
            compress(initCodeSize + 1, os); // compress and write the pixel data
    
            os.write(0); // write block terminator
          }
    
          // Flush the packet to disk, and reset the accumulator
          void flush_char(OutputStream outs) throws IOException {
            if (a_count > 0) {
              outs.write(a_count);
              outs.write(accum, 0, a_count);
              a_count = 0;
            }
          }
    
          final int MAXCODE(int n_bits) {
            return (1 << n_bits) - 1;
          }
    
          // ----------------------------------------------------------------------------
          // Return the next pixel from the image
          // ----------------------------------------------------------------------------
          private int nextPixel() {
            if (remaining == 0)
              return EOF;
    
            --remaining;
    
            byte pix = pixAry[curPixel++];
    
            return pix & 0xff;
          }
    
          void output(int code, OutputStream outs) throws IOException {
            cur_accum &= masks[cur_bits];
    
            if (cur_bits > 0)
              cur_accum |= (code << cur_bits);
            else
              cur_accum = code;
    
            cur_bits += n_bits;
    
            while (cur_bits >= 8) {
              char_out((byte) (cur_accum & 0xff), outs);
              cur_accum >>= 8;
              cur_bits -= 8;
            }
    
            // If the next entry is going to be too big for the code size,
            // then increase it, if possible.
            if (free_ent > maxcode || clear_flg) {
              if (clear_flg) {
                maxcode = MAXCODE(n_bits = g_init_bits);
                clear_flg = false;
              } else {
                ++n_bits;
                if (n_bits == maxbits)
                  maxcode = maxmaxcode;
                else
                  maxcode = MAXCODE(n_bits);
              }
            }
    
            if (code == EOFCode) {
              // At EOF, write the rest of the buffer.
              while (cur_bits > 0) {
                char_out((byte) (cur_accum & 0xff), outs);
                cur_accum >>= 8;
                cur_bits -= 8;
              }
    
              flush_char(outs);
            }
          }
        }
  • 相关阅读:
    Visual Studio一直弹出“未将对象引用设置到对象的实例”对话框的处理
    C#如何将十六进制数字符串转byte[]?
    steam游戏存档迁移
    Java实现行列式计算
    Python中单引号、双引号、三引号的区别
    git基本使用方法
    windows(hexo)使用git时出现:warning: LF will be replaced by CRLF
    steam相关插件
    linux的后台运行相关命令
    Ubuntu下启动/重启/停止apache服务器
  • 原文地址:https://www.cnblogs.com/feijian/p/4495362.html
Copyright © 2011-2022 走看看