zoukankan      html  css  js  c++  java
  • leetcode -- Maximal Rectangle TODO O(N)

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.

    [解题思路]

    1.brute force

    枚举所有sub-matrix(O(N^2), N = m*n) ,检查每个子矩阵是不是都是1,如果是更新最大面积,检查子矩阵是否都是1需要

    花费O(N). 故总的时间为O(N^3) N = m*n

    可以过小数据,大数据直接TLE

     1 public int maximalRectangle(char[][] matrix) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         int m = matrix.length;
     5         if(m == 0){
     6             return m;
     7         }
     8         int n = matrix[0].length;
     9         if(n == 0){
    10             return n;
    11         }
    12         
    13         return generateMaxArea(matrix);
    14     }
    15     
    16     private static int generateMaxArea(char[][] matrix) {
    17         int m = matrix.length;
    18         int n = matrix[0].length;
    19         int maxArea = 0;
    20         for (int i = 1; i <= m; i++) {
    21             for (int j = 1; j <= n; j++) {
    22                 int subMatrixArea = enumerateSubMatrix(matrix, i, j);
    23                 if (subMatrixArea > maxArea) {
    24                     maxArea = subMatrixArea;
    25                 }
    26             }
    27         }
    28         return maxArea;
    29     }
    30 
    31     public static int enumerateSubMatrix(char[][] matrix, int i, int j) {
    32         int m = matrix.length;
    33         int n = matrix[0].length;
    34         int subMatrixArea = 0;
    35         for (int p = 0; p <= (m - i); p++) {
    36             for (int q = 0; q <= (n - j); q++) {
    37                 int area = getSubMatrixArea(matrix, p, q, p + i - 1, q + j - 1);
    38                 if (area > subMatrixArea) {
    39                     subMatrixArea = area;
    40                 }
    41             }
    42         }
    43         return subMatrixArea;
    44     }
    45 
    46     private static int getSubMatrixArea(char[][] matrix, int p, int q, int i,
    47             int j) {
    48         for (int m = p; m <= i; m++) {
    49             for (int n = q; n <= j; n++) {
    50                 if (matrix[m][n] == '0') {
    51                     return 0;
    52                 }
    53             }
    54         }
    55 
    56         return (i - p + 1) * (j - q + 1);
    57     }

     2.DP

    令dp[i][j]表示点(i,j)开始向右连续1的个数,花费O(M*N)的时间可以计算出来

    接着从每个点开始,将该点作为矩形左上角点,从该点开始向下扫描直到最后一行或者dp[k][j] == 0

    每次计算一个矩形的面积,与最大面积进行比较,如最大面积小于当前面积则进行更新,总的时间复杂度为O(M*N*M)

     1 public int maximalRectangle(char[][] matrix) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         int m = matrix.length;
     5         if(m == 0){
     6             return m;
     7         }
     8         int n = matrix[0].length;
     9         int[][] dp = new int[m][n];
    10         
    11         for(int i = 0; i < m; i++){
    12             for(int j = 0; j < n; j++){
    13                 if(matrix[i][j] == '0'){
    14                     continue;
    15                 } else {
    16                     dp[i][j] = 1;
    17                     int k = j + 1;
    18                     while(k < n && (matrix[i][k] == '1')){
    19                         dp[i][j] += 1;
    20                         k++;
    21                     }
    22                 }
    23             }
    24         }
    25         int maxArea = 0;
    26         for(int i = 0; i < m; i++){
    27             for(int j = 0; j < n; j++){
    28                 if(dp[i][j] == 0){
    29                     continue;
    30                 } else{
    31                     int area = 0, minDpCol = dp[i][j];
    32                     for(int k = i; k < m && dp[k][j] > 0; k++){
    33                         if(dp[k][j] < minDpCol){
    34                             minDpCol = dp[k][j];
    35                         }
    36                         area = (k - i + 1) * minDpCol;
    37                         if(area > maxArea){
    38                             maxArea = area;
    39                         }
    40                     }
    41                 }
    42             }
    43         }
    44         return maxArea;
    45     }
  • 相关阅读:
    linux配置ssh互信
    查看LINUX进程内存占用情况
    RSync实现文件备份同步详解
    rsync同步完整配置
    Linux下利用rsync实现多服务器文件同步
    Linux下的split 命令(将一个大文件根据行数平均分成若干个小文件)
    Linux大文件分割split和合并cat使用方法
    Linux计划任务入门详解
    一步一步理解最大熵模型
    一步一步理解word2Vec
  • 原文地址:https://www.cnblogs.com/feiling/p/3296916.html
Copyright © 2011-2022 走看看