zoukankan      html  css  js  c++  java
  • 动态规划小结

    引言

    二维动态规划中最常见的是棋盘型二维动态规划。

    func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关

    这种情况下,时间复杂度 O(n*n),空间复杂度往往可以优化为O(n)

    例题  1

    Minimum Path Sum 

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    Note: You can only move either down or right at any point in time.

    时间复杂度 O(n*n),空间复杂度O(n)的解法。

    这里用了个以前不用的技巧,当想把数组初始化为非0的值时,不用memset,而改用vector表示数组。

    class Solution {
    public:
        int minPathSum(vector<vector<int> > &grid) {
            if(grid.size() == 0 || grid[0].size() == 0) return 0;
            int H = grid.size(), W = grid[0].size();
            vector<int> path(W+1, INT_MAX);
            path[1] = 0;
            for(int i = 1; i <= H; ++i)
                for(int j = 1; j <= W; path[j] = min(path[j-1], path[j]) + grid[i-1][j-1], ++j);
            return path[W];
        }
    };

    例题  2

    Unique Paths II

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    Above is a 3 x 7 grid. How many possible unique paths are there?

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    时间复杂度 O(n*n),空间复杂度O(n)

    class Solution {
    public:
        int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
            if(obstacleGrid.size() == 0 || obstacleGrid[0].size() == 0) return 0;
            int H = obstacleGrid.size(), W = obstacleGrid[0].size();
            int paths[W+1]; memset(paths, 0, sizeof(paths));
            paths[1] = (obstacleGrid[0][0] ? 0 : 1);
            for(int i = 1; i <= H; ++i){
                for(int j = 1; j <= W; ++j){
                    paths[j] = (obstacleGrid[i-1][j-1] ? 0 : paths[j-1] + paths[j]);
                }
            }
            return paths[W];
        }
    };

    例题  3

    很熟悉的 Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

    You have the following 3 operations permitted on a word:

    a) Insert a character
    b) Delete a character
    c) Replace a character

    类似的还有http://basicalgos.blogspot.com/上的 53. Edit Distance between strings

    这道题目我们要设置两个变量,i和j, E(i, j) 表示word1中以i 结尾的子串到表示word2中以j 结尾的子串的距离。

    状态转移方程借助53. Edit Distance between strings上的这张图片来说明:

    LeetCode那道题的实现代码,时间复杂度 O(n*n),空间复杂度O(n)

    class Solution {
    public:
        int minDistance(string word1, string word2) {
            if(word1.empty() && word2.empty()) return 0;
            int len1 = word1.length(), len2 = word2.length();
            int A[len2+1]; int pre;
            memset(A, 0, sizeof(A));
            for(int i = 0; i <= len1; ++i){
                for(int j = 0; j <= len2; ++j){
                    int Min = INT_MAX;
                    if(i > 0) Min = min(A[j]+1, Min);
                    if(j > 0) Min = min(A[j-1]+1, Min);
                    if(i > 0 && j > 0) Min = min(Min, pre+(word1[i-1] == word2[j-1] ? 0 : 1));
                    if(i == 0 && j == 0) Min = 0;
                    pre = A[j];
                    A[j] = Min;
                }
            }
            return A[len2];
        }
    };

    后记

    棋盘型二维动态规划典型的题目还有“寻找最长公共子串(substring)”,“寻找最长公共子序列(subsequence)”。

    这些都可以给出时间复杂度 O(n*n),空间复杂度O(n)的解。

  • 相关阅读:
    CSS定位DIV绝对底部
    Android平台语音交友软件源码开发,语音通话的实现
    小视频app源码审核机制优化,直播间的优化重点
    为什么一对一直播系统源码功耗高,这些原因你了解吗?
    短视频app源码多元化发展,加深与电商的渊源
    【日本語新聞選読】第7回:4月14日
    JSP属性的四种保存范围(page request session application)
    CDC之fast->slow (1)
    openMSP430之openmsp430-loader
    最简单的DWR例子
  • 原文地址:https://www.cnblogs.com/felixfang/p/3647905.html
Copyright © 2011-2022 走看看