zoukankan      html  css  js  c++  java
  • soundtouch 变速算法matlab实现

    soundtouch变速主要采用WSOLA算法来进行变速。

    http://www.surina.net/soundtouch/

    https://blog.csdn.net/suhetao/article/details/5863477

    The principle of WSOLA refer to following figure:

    There are three important parameter: SequenceMs, overlapMs, seekWindowMs.

    These parameters affect to the time-stretch algorithm as follows:

      • DEFAULT_SEQUENCE_MS: This is the default length of a single processing sequence in milliseconds which determines the how the original sound is chopped in the time-stretch algorithm. Larger values mean fewer sequences are used in processing. In principle a larger value sounds better when slowing down the tempo, but worse when increasing the tempo and vice versa.

        By default, this setting value is calculated automatically according to tempo value.
      • DEFAULT_SEEKWINDOW_MS: The seeking window default length in milliseconds is for the algorithm that seeks the best possible overlapping location. This determines from how wide a sample "window" the algorithm can use to find an optimal mixing location when the sound sequences are to be linked back together.

        The bigger this window setting is, the higher the possibility to find a better mixing position becomes, but at the same time large values may cause a "drifting" sound artifact because neighboring sequences can be chosen at more uneven intervals. If there's a disturbing artifact that sounds as if a constant frequency was drifting around, try reducing this setting.

        By default, this setting value is calculated automatically according to tempo value.
      • DEFAULT_OVERLAP_MS: Overlap length in milliseconds. When the sound sequences are mixed back together to form again a continuous sound stream, this parameter defines how much the ends of the consecutive sequences will overlap with each other.

        This shouldn't be that critical parameter. If you reduce the DEFAULT_SEQUENCE_MS setting by a large amount, you might wish to try a smaller value on this.

    function out = check_limits(in, min, max)

    if in < min

      out = min;

    else if in > max

      out = max;

    else

      out = in;

    end

    end

    function [seekWindowLength, seekLength, overlapLength] = calcSeqParams(fs, tempo)

    overlapMs = 8;

    autoseq_tempo_low = 0.5;

    autoseq_tempo_top = 2.0;

    autoseq_at_min = 90;

    autoseq_at_max = 40;

    autoseq_k =(autoseq_at_max - autoseq_at_min) / (autoseq_temp_top - auto_temp_low);

    autoseq_c = autoseq_at_min -autoseq_k * autoseq_temp_low;

    autoseek_at_min = 20;

    autoseek_at_max = 15;

    autoseek_k =(autoseek_at_max - autoseek_at_min) / (autoseq_temp_top - auto_temp_low);

    autoseek_c = autoseek_at_min -autoseek_k * autoseq_temp_low;

    %calc sequenceMs

    seq = autoseq_c + autoseq_k * tempo;

    seq = check_limits(seq, autoseq_at_max, autoseq_at_min);

    sequenceMs = round(seq);

    seek= autoseek_c + autoseek_k * tempo;

    seek= check_limits(seek, autoseek_at_max, autoseek_at_min);

    seekMs = round(seek)

    seekWindowLength = sequenceMs * fs / 1000;

    seekLength = seekMs * fs /1000;

    overlapLength = overlapMs * fs / 1000;

    overlapLength  = overlapLength - mod(overlapLength, 8);

    end

    function corr = calcCrossCorr(mixingSeg, compareSeg)

    len = length(compareSeg(:,1));

    corr = 0;

    norm = 0;

    for i = 1: 1 : len

      corr = corr + mixingSeg(i) * compareSeg(i);

      norm = norm + mixingSeg(i) * mixingSeg(i);

    end

    corr = corr / sqrt(norm);

    end

    function offset = seekBestOverlapPosition(seekWindow, compareSeg, overlapLength, seekLength)

    bestCorr = calcCrossCorr(seekWindow(1:overlapLength, 1), compareSeg);

    offset = 1;

    for i = 2 : 1 : seekLength

      corr = calcCrossCorr(seekWindow(i:i + overlapLength, 1), compareSeg);

      if corr > bestCorr

        bestCorr = corr;

        offset = i;

      end

    end

    end

    function output = overlap(rampUp, rampDown)

    len=length(rampDown);

    for i = 1:1:len

      output(i,1) = rampUp(i) * i / len + rampDown(i) * (len - i) / len;

    end

    end

    function [output, outpos, lastCompare, inpos] = processSamples(input, inputLen, expectOutputLen, compareSeg, overlapLength, seekLength, seekWindowLength, tempo, isBeginning)

    nominalSkip = tempo * (seekWindowLength - overlapLength);

    sampleReq  = max(round(nominalSkip) + overlapLength, seekWindow);

    inpos = 1;

    outpos = 1;

    offset = 0;

    skipFract = 0;

    while inputLen - inpos >= sampleReq

      if isBeginning == 0

        offset = seekBestOverlapPosition(input(inpos : inpos + overlapLength + seekLength - 1, 1), compareSeg, overlapLength, seekLength);

        output(outpos:outpos + overlapLength - 1, 1) = overlap(input(inpos + offset : inpos + offset + overlapLength - 1, 1), compareseg);

        ouputpos = outpos + overlapLength;

        offset = offset  + overlapLength;

      else

        isBeginning = 0;

        skip = round(tempo * overlapLength);

        skipFract = skipFract - skip;

      end

      temp = (seekWindowLength - 2 * overlapLength);

      if outpos + tmep < expectOutputLen

        output(outpos : outpos + temp - 1, 1) = input (inpos + offset : inpos + offset + temp - 1, 1);

        outpos = outpos + temp;

      else   

        output(outpos : expectOutputLen, 1) = input (inpos + offset : inpos + offset + expectOutputLen- outpos, 1);

        outpos = expectOutputLen;

        beak;

      end

      compareSeg = input (inpos + offset + temp: inpos + offset + temp +overlapLength - 1, 1);

      skipFract = skipFract + nominalSkip;

      ovlSkip = floor(skipFract);

      skipFract = skipFract - ovlSkip;

      inpos = inpos  + ovlSkip;

     end

    lastCompare = compareSeg;

    end

    function output = changeTempo(input, fs, tempo)

    inputLen = length(input(:,1));

    outputLen = round(inputLen / tempo);

    output = zeros(outputLen, 1);

    [seekWindowLength, seekLength, overlapLength] = calcSeqParams(fs, tempo);

    isBeginning = 1;

    compareBuf = zeros(overlapLength, 1);

    expectOutLen = outputLen;

    [output, outpos, compareBuf, inpos] = processSamples(input, inputLen, expectOutLen, compareBuf, overlapLength, seekLength, seekWindowLength, tempo, isBeginning);

    remainningSamples = inputLen - inpos;

    %append zeros to the remainning data

    remainningLen = remainningSamples + 200 * 128;

    remainningInput = zeros(remainningLen, 1);

    remainningInput(1:remainningSamples, 1) = input(inpos:inpos + remainningSamples - 1, 1);

    if outputLen > outpos

      expectOutLen = outputLen - outpos + 1;

      isBeginning = 0;

      [tempOutput, tempOutpos, compareBuf, inpos] = processSamples(remainingInput, remainingInputLen, expectOutLen, compareBuf, overlapLength, seekLength, seekWindowLength, tempo, isBeginning);

      output(outpos:outputLen, 1) = tempOutput(1: tempOutpos);

     end

    end

     main.m:

    clc;

    clear all;

    [input fs] = wavread('test.wav');

    tempo = 2;

     output = changeTempo(input, fs, tempo);

    wavwrite(output, fs, 'output.wav');

  • 相关阅读:
    spsss基本统计分析操作攻略
    MATLAB读取Excel表格数据和处理数据
    MATLAB 雷达图画图函数
    spss新手教程
    MATLAB绘制饼状图
    高斯消元法解线性方程组(C++实现)
    Java和matlab混合编程
    Matlab与Java混合编程的教程
    两组数据的相关性分析
    vs2013+QT5环境
  • 原文地址:https://www.cnblogs.com/fellow1988/p/9976240.html
Copyright © 2011-2022 走看看