zoukankan      html  css  js  c++  java
  • 图像检索阶段性总结

    今年五月份,我开始了对图像检索(基于内容)这一课题的学习。这篇文章总结了我这两个月所学到的关于图像检索的知识。

    目前我们实验的模型是导师给出的,流程如下:

    S1.提取图像库中所有图像的相应特征;

    S2.对特征进行聚类;

    S3.计算图片库中每张图片的对应“词汇”频率直方图。

     

    上述流程生成的“词汇”频率直方图就当作是特征库。检索的流程如下:

    S1.提取待查询的图像特征;

    S2.计算待查询图像的“词汇”频率直方图;

    S3.计算待查询图像“词汇”频率直方图与特征库中各个图像的“词汇”频率直方图的相似性;

    S4.按S3计算出的相似性排序输出结果。

     

    这种想法与文本检索有一定关系.至于词汇,我的理解是,特征点可以当作是一个词汇,聚类中心也可以当作是一个词汇.

    在我们的初期实验中,图像特征用SIFT特征,聚类算法用k-means,距离度量用欧几里得距离,相似度计算用余弦相似性。实验的图像库是“256 object categories”中选出的399张图片,共有SIFT特征437941个.

    下面是部分实验结果,k-means的k取20, 相似度取0.9,查询图片是网上找的ak47(左上角)。

    结果还算OK,没有出现除ak47以外的其它图片。

    我们的下一步计划是:

    1.尝试SURF特征;

    2.生成词汇时,考虑TF-IDF;

    3.比对加入颜色信息后的结果;

    4.考虑其它聚类算法,如DBSCAN。

    附结果输出截图及图片库截图:

     

     

  • 相关阅读:
    输入法或搜索类软件评价
    Money-去哪了每日站立会议
    Money去哪了- 每日站立会议
    Money去哪了- 每日站立会议
    课下作业-典型用户描述,描绘用户场景
    Money去哪了-每日站立会议
    Money去哪了- 每日站立会议
    Money-去哪了每日站立会议
    Money去哪了- 每日站立会议
    Money-去哪了每日站立会议
  • 原文地址:https://www.cnblogs.com/fems/p/3175506.html
Copyright © 2011-2022 走看看