zoukankan      html  css  js  c++  java
  • hdu 5730 Shell Necklace 分治FFT

    Shell Necklace

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5730

    Description

    Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough.

    Suppose the shell necklace is a sequence of shells (not a chain end to end). Considering i continuous shells in the shell necklace, I know that there exist different schemes to decorate the i shells together with one declaration of love.

    I want to decorate all the shells with some declarations of love and decorate each shell just one time. As a problem, I want to know the total number of schemes.

    Input

    There are multiple test cases(no more than 20 cases and no more than 1 in extreme case), ended by 0.

    For each test cases, the first line contains an integer n, meaning the number of shells in this shell necklace, where 1≤n≤105. Following line is a sequence with n non-negative integer a1,a2,…,an, and ai≤107 meaning the number of schemes to decorate i continuous shells together with a declaration of love.

    Output

    For each test case, print one line containing the total number of schemes module 313(Three hundred and thirteen implies the march 13th, a special and purposeful day).

    Sample Input

    3
    1 3 7
    4
    2 2 2 2
    0

    Sample Output

    14
    54

    Hint

    enter image description here
    For the first test case in Sample Input, the Figure 1 provides all schemes about it. The total number of schemes is 1 + 3 + 3 + 7 = 14.

    题意

    题解:

    推出显然的公式
    (dp[i]= sum_{j=0}^{i-1}(dp[j]*a[i-j]))
    也就是分治fft的经典形式

    cdq(l,r)先算出前一半的真实dp值,后一半加上前一半的贡献,再递归后一半
    每次操作为区间长度*log,总的复杂度nloglog

    代码

    //#include <bits/stdc++.h>
    #include <stdio.h>
    #include <iostream>
    #include <string.h>
    #include <math.h>
    #include <stdlib.h>
    #include <limits.h>
    #include <algorithm>
    #include <queue>
    #include <vector>
    #include <set>
    #include <map>
    #include <stack>
    #include <bitset>
    #include <string>
    #include <time.h>
    using namespace std;
    long double esp=1e-11;
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #define fi first
    #define se second
    #define all(a) (a).begin(),(a).end()
    #define cle(a) while(!a.empty())a.pop()
    #define mem(p,c) memset(p,c,sizeof(p))
    #define mp(A, B) make_pair(A, B)
    #define pb push_back
    #define lson l , m , rt << 1
    #define rson m + 1 , r , rt << 1 | 1
    typedef long long int LL;
    const long double PI = acos((long double)-1);
    const LL INF=0x3f3f3f3fll;
    const int MOD = 313ll;
    const int maxn=300000;
    struct complex{
        double r,i;
        complex(double _r = 0.0,double _i = 0.0){r = _r; i = _i;}
        complex operator +(const complex &b){return complex(r+b.r,i+b.i);}
        complex operator -(const complex &b){return complex(r-b.r,i-b.i);}
        complex operator *(const complex &b){return complex(r*b.r-i*b.i,r*b.i+i*b.r);}
    };
    void change(complex y[],int len){
        int i,j,k;
        for(i = 1, j = len/2;i < len-1; i++){
            if(i < j)swap(y[i],y[j]);
            k = len/2;
            while( j >= k){
                j -= k;
                k /= 2;
            }
            if(j < k) j += k;
        }
    }
    void FFT(complex y[],int len,int on){  //len=2^k
        change(y,len);
        for(int h = 2; h <= len; h <<= 1){
            complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0;j < len;j+=h){
                complex w(1,0);
                for(int k = j;k < j+h/2;k++){
                    complex u = y[k];
                    complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0;i < len;i++)
                y[i].r /= len;
    }
    int callen(int len1,int len2){
        int len=1;
        while(len < len1*2 || len < len2*2)len<<=1;
        return len;
    }
    complex tf1[maxn],tf2[maxn];   //0~len1+len2-1,fftans[i] = y1[i] * y2[i]
    int fftans[maxn];
    void fft(int* y1,int len1,int* y2,int len2){ //0~len1-1,0~len2-1
        int len=callen(len1,len2);
        for(int i = 0;i < len1;i++)
            tf1[i] = complex(y1[i],0);
        for(int i = len1;i < len;i++)
            tf1[i] = complex(0,0);
        for(int i = 0;i < len2;i++)
            tf2[i] = complex(y2[i],0);
        for(int i = len2;i < len;i++)
            tf2[i] = complex(0,0);
        FFT(tf1,len,1);
        FFT(tf2,len,1);
        for(int i = 0;i < len;i++)
            tf1[i] = tf1[i]*tf2[i];
        FFT(tf1,len,-1);
        for(int i = 0;i < len1+len2-1;i++)
            fftans[i] = tf1[i].r+0.5;
    }
    int A[maxn],Ans[maxn];
    void solve(int l,int r){
        int m=(l+r)>>1;
        fft(Ans+l,m-l+1,A,r-l+1);
        for(int i = m-l+1;i <=r-l;i++)
            Ans[i+l]=(Ans[i+l]+fftans[i])%MOD;
    }
    void CDQ(int L,int R){
        if(L==R)return;
        int m=(L+R)>>1;
        CDQ(L,m);
        solve(L,R);
        CDQ(m+1,R);
    }
    int main()
    {
        //freopen("in.txt", "r", stdin);
        //freopen("inlay.in", "r", stdin);
        //freopen("out.txt", "w", stdout);      %I64d
        //vector<int>::iterator iter;
        //memset(m,0,sizeof(int));
        //for(int x=1;x<=n;x++)
        //for(int y=1;y<=n;y++)
        //scanf("%d",&a);
        //printf("%d
    ",ans);
        while(1)
        {
            int n;
            scanf("%d",&n);
            if(n==0)break;
            memset(Ans,0,(callen(n,n)+10)*sizeof(int));
            Ans[0]=1;
            memset(A,0,(callen(n,n)+10)*sizeof(int));
            for(int x=1;x<=n;x++)
            {
                scanf("%d",&A[x]);
                A[x]%=MOD;
            }
            CDQ(0,n);
            printf("%d
    ",(Ans[n]+MOD)%MOD);
        }
        return 0;
    }
  • 相关阅读:
    局域网中电脑之间无法ping通问题
    Python 字典dict操作定义
    set集合
    Python 元组遍历排序操作方法
    Python List 列表list()方法
    set函数&操作
    dict函数
    文件操作
    list函数
    字符串格式化format使用
  • 原文地址:https://www.cnblogs.com/femsub/p/5723297.html
Copyright © 2011-2022 走看看