zoukankan      html  css  js  c++  java
  • 利用最小二乘法实现图片中多个点的一元线性回归

        在日常生活和科学实验中,人们会经常发现因变量y和自变量x之间存在一定线性关系设一组数据为:

       

    yx的关系可以用线性方程表示:

       

     

        按最小二乘法可得:

       

     

       

     

            线性关系的程度可以用相关系数r表示

      

     

            所以,如果想在图象框中根据已知的多个存在线性关系的点描出相应的离所有的点最靠近的直线,应该利用以上一元线性回归的方法,代码如下:

     

    Private Sub Command1_Click()
    Picture1.Scale (0, 20)-(12, 0) '设置坐标范围
    Dim p(4, 1) As Double, i As Integer
    For i = 0 To 4
    p(i, 0) = Choose(i + 1, 1.2, 3.7, 4.1, 5.1, 8.3)
    p(i, 1) = Choose(i + 1, 2.2, 6.4, 7.8, 10.1, 15.8)
    Next ' 定义五个点
    drawline Picture1, p '画出过五个点的直线
    End Sub
    Sub drawline(ByVal pic As PictureBox, ByRef p() As Double)
    Dim sigmax As Double, sigmay As Double, sigmaxx As Double, sigmaxy As Double, n As Integer
    Dim i As Long
    Dim a As Double, b As Double '截距斜率
    Dim x0 As Double, y0 As Double, x1 As Double, y1 As Double '定义两端点
    n = UBound(p) - LBound(p) + 1 '点的个数
    For i = LBound(p) To UBound(p)
    Picture1.Circle (p(i, 0), p(i, 1)), Picture1.ScaleWidth / 200, vbRed '描点
    Picture1.CurrentX = p(i, 0)
    Picture1.CurrentY = p(i, 1)
    Picture1.ForeColor = vbBlue
    Picture1.Print "(" & p(i, 0) & ","; p(i, 1) & ")" '数据标志
    sigmax = sigmax + p(i, 0) 'Σx
    sigmay = sigmay + p(i, 1) 'Σy
    sigmaxx = sigmaxx + p(i, 0) ^ 2 'Σx^2
    sigmaxy = sigmaxy + p(i, 0) * p(i, 1) 'Σx*y
    Next

    a = (sigmaxx * sigmay - sigmax * sigmaxy) / (n * sigmaxx - sigmax ^ 2) '截距
    b = (n * sigmaxy - sigmax * sigmay) / (n * sigmaxx - sigmax ^ 2) '斜率
    x0 = Picture1.ScaleLeft
    y0 = a + b * x0 '左端点
    x1 = Picture1.ScaleLeft + Picture1.ScaleWidth
    y1 = a + b * x1 '右端点
    Picture1.Line (x0, y0)-(x1, y1), vbGreen '回归直线
    End Sub

     

    结果如下图所示:

      

     

  • 相关阅读:
    datetime和time的时间戳用法
    ER图
    python update()
    理解JWT(JSON Web Token)认证及python实践
    python lambda匿名函数 用法
    flask_restful(转载)
    Flask-SQLALchemy
    创建只有一个元素的元组
    MySQL安装过程中显示无法启动
    聚类
  • 原文地址:https://www.cnblogs.com/fengju/p/6336382.html
Copyright © 2011-2022 走看看