题目链接:戳我
一个点只能经过一次——拆点,连流量为1,费用为0的边。
最多能经过多少城市——最大费用流。
两个点之间有一条路线——从u'连向v。(这种题一般都这样建边)
需要注意的一点是——第二个测试点它的最佳方案是从1到n然后再到1(所以不能对于每条可行的线路的容量设置成1,这样的话对于这种情况就无法回来了qwq)
#ifndef ONLINE_JUDGE打成了#ifdef ONLINE_JUFGE.....提交一直保持9分了一个小时的我表示已经自闭了
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#define MAXN 100010
#define S 0
#define T n*2+1
using namespace std;
int n,m,t=1,c,f,tot;
int head[MAXN],pre_v[MAXN],pre_e[MAXN],dis[MAXN],vis[MAXN];
struct Edge{int to,nxt,dis,cost;}edge[MAXN];
map<string,int>M;
map<int,string>K;
vector<int>ans;
string name[5010];
inline void add(int from,int to,int dis,int cost)
{
edge[++t].nxt=head[from],edge[t].to=to,edge[t].dis=dis,edge[t].cost=cost,head[from]=t;
edge[++t].nxt=head[to],edge[t].to=from,edge[t].dis=0,edge[t].cost=-cost,head[to]=t;
}
inline bool spfa()
{
queue<int>q;
memset(dis,0x3f,sizeof(dis));
q.push(S);vis[S]=1;dis[S]=0;
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=0;
for(int i=head[u];i;i=edge[i].nxt)
{
int v=edge[i].to;
if(dis[u]+edge[i].cost<dis[v]&&edge[i].dis)
{
dis[v]=dis[u]+edge[i].cost;
pre_v[v]=u,pre_e[v]=i;
if(!vis[v])
q.push(v),vis[v]=1;
}
}
}
if(dis[T]==0x3f3f3f3f) return false;
int flow=(int)1e9;
for(int i=T;i!=S;i=pre_v[i]) flow=min(flow,edge[pre_e[i]].dis);
for(int i=T;i!=S;i=pre_v[i]) edge[pre_e[i]].dis-=flow,edge[pre_e[i]^1].dis+=flow;
c+=flow*dis[T];
f+=flow;
return true;
}
inline void check(int now)
{
ans.push_back(now);
if(now==n)return;
for(int i=head[now+n];i;i=edge[i].nxt)
{
int v=edge[i].to;
if(vis[i]==0&&edge[i^1].dis)
{vis[i]=1,check(v);return;}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
string ch;
cin>>ch;
M[ch]=i;
K[i]=ch;
}
for(int i=1;i<=m;i++)
{
string ch1,ch2;
cin>>ch1>>ch2;
int u=M[ch1],v=M[ch2];
if(u>v) swap(u,v);
add(u+n,v,(int)1e9,0);
}
for(int i=2;i<n;i++) add(i,i+n,1,-1);
add(S,1,2,0),add(1,1+n,2,0);
add(n,n*2,2,0),add(n*2,T,2,0);
while(spfa());
if(f!=2)
{ printf("No Solution!
");
return 0;
}
printf("%d
",-c+2);
memset(vis,0,sizeof(vis));
check(1);
for(int i=0;i<ans.size();i++)
cout<<K[ans[i]]<<endl;
ans.clear();
check(1);
for(int i=ans.size()-1;i>=0;i--)
if(ans[i]!=n)
cout<<K[ans[i]]<<endl;
return 0;
}