zoukankan      html  css  js  c++  java
  • PyTorch in Action: A Step by Step Tutorial

    PyTorch in Action: A Step by Step Tutorial

    Installation Guide

    Step 1, donwload the Miniconda and installing it on your computer.

    The reason why explain installing conda is that some of classmates don`t have a conda environment on their computer.

    https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/

    Step 2, create a conda virtual envriomment

    In this ariticle, we assume that there is a CPU version of PyTorch is going to be installed. To specifically distinguish CPU version and GPU version, we`re going to create a virtual environment named "PyTorch-CPU".

    In the Conda Prompt run the following commands:

    conda create -n PyTorch-CPU pip
    

    Step 3, install PyTorch

    On the website of PyTorch(https://pytorch.org/), there is a guidance on the page. To chose the most appropriate options(e.g. as the follow figure).

    In the Conda Prompt run the following commands:

    activate PyTorh-CPU
    conda install pytorch-cpu torchvision-cpu -c pytorch
    

    Congratulations, installation of PyTorch is complete!

    Data Processing

    Before we start ours building. We have to access the dataset and clean it.

    Here we have accessed 西瓜数据集3.0. And we convert the character-described features to numeric.

    # encoding:utf8
    # 西瓜3.0 数据集
    
    waterMelons = [
        # 1
        ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        # 2
        ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
        # 3
        ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        # 4
        ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
        # 5
        ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        # 6
        ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '好瓜'],
        # 7
        ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', '好瓜'],
        # 8
        ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', '好瓜'],
        # 9
        ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'],
        # 10
        ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', '坏瓜'],
        # 11
        ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '坏瓜'],
        # 12
        ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', '坏瓜'],
        # 13
        ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', '坏瓜'],
        # 14
        ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', '坏瓜'],
        # 15
        ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '坏瓜'],
        # 16
        ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', '坏瓜'],
        # 17
        ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜']
    ]
    
    features = list() # [[青绿, 乌黑, 浅白], [蜷缩, 硬挺...], ...]
    
    
    def numeric(data):
        l = list()
        for i,s in enumerate(data):
            val = features[i].index(s)
            l.append(val)
        return l
    
    
    if __name__ == '__main__':
        for melon in waterMelons:
            for i, feature in enumerate(melon):
                try:
                    if feature not in features[i]:
                        features[i].append(feature)
                except IndexError:
                    features.append([feature])
    
        f = open('data/WaterMelon.txt', encoding='utf8', mode='w')
        for melon in waterMelons:
            val = numeric(melon)
            f.write("%s
    " % val)
    
    

    Your first Neural Network with PyTorch

    Here we implement a neural network with input layer and log softmax layer.

    There are 12 parameters need to be trained:

    [input imes hiddens imes output = parameters\ 6 imes 2 = 12 ]

    # encoding:utf8
    
    import torch
    from sklearn.model_selection import train_test_split
    
    
    class Model(torch.nn.Module):
        def __init__(self):
            super(Model, self).__init__()
            self.layer = torch.nn.Linear(6, 2)
            self.softmax = torch.nn.LogSoftmax(dim=1)
    
        def forward(self, x):
            out = self.layer(x)
            out = self.softmax(out)
            return out
    
    
    if __name__ == '__main__':
        x, y = list(), list()
        with open('data/WaterMelon.txt', encoding='utf8') as f:
            for line in f:
                l = eval(line.strip())
                x.append(l[:-1])
                y.append(l[-1])
    
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33)
        x_train, x_test, y_train, y_test = torch.Tensor(x_train), torch.Tensor(x_test), torch.Tensor(y_train).long(), torch.Tensor(y_test).long()
    
        model = Model()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        criticism = torch.nn.CrossEntropyLoss()
    
        # train
        for epoch in range(500):
            out = model(x_train)
            loss = criticism(out, y_train)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
        # test
        y_pred = model(x_test)
        _, predicted = torch.max(y_pred, 1)
        acc = torch.sum(y_test == predicted ).numpy() / len(x_test)
        print(acc)
    
    

    We got the accuracy 0.8, sometimes we got 1.

    LOL!

  • 相关阅读:
    Autofac 学习简易教程随笔(一)
    实现Entity Framework SQLite Code First 开发
    Entity Framework SQLite 开发及实现简单的自定义Migration Engine
    MSSQLServer和SQL Server Express、LocalDB的区别
    .gitignore文件
    Entity Framework MSSQL Code First 开发
    页面为要加<!DOCTYPE html>
    数字图像处理(下)
    数字图像处理(上)
    列表
  • 原文地址:https://www.cnblogs.com/fengyubo/p/10120667.html
Copyright © 2011-2022 走看看