zoukankan      html  css  js  c++  java
  • nlp homework 03

    NLP Homework 03 ——冯煜博

    题目描述

    (盒子和球模型)假设有3个盒子,每个盒子里装有红白两种颜色的球,盒子里的红白球有下表列出,初始状态分布。

    符号发射概率

    状态转移矩阵

    解答

    1. 给出HMM模型 (mu=(A, B,pi))

    A,“状态转移矩阵”如下:

    [egin{array}{c|lcr} A & ext{box1} & ext{box2} & ext{box3} \ hline box1 & 0.5 & 0.2 & 0.3 \ box2 & 0.3 & 0.5 & 0.2 \ box3 & 0.2 & 0.3 & 0.5 end{array} ]

    B,“符号发射概率”如下矩阵:

    [egin{array}{c|lcr} B & ext{red} & ext{white} \ hline box1 & frac{1}{2} & frac{1}{2} \ box2 & frac{2}{5} & frac{3}{5} \ box3 & frac{7}{10} & frac{3}{10} end{array} ]

    (pi),“初始状态的概率分布”如下矩阵

    [egin{array}{c|cr} & ext{box1} & ext{box2} & ext{box3} \ hline pi & 0.2 & 0.4 & 0.4 end{array} ]

    2. 试用前向算法计算观测序列概率:{红,白,红}

    O = {红, 白, 红}

    step 1 初始化

    (a_{红}(box1) = pi_{box1} b_{box1}(红) = 0.2 imes frac{1}{2} = 0.1)

    (a_{红}(box2) = pi_{box2} b_{box2}(红) = 0.4 imes frac{2}{5} = 0.16)

    (a_{红}(box3) = pi_{box3} b_{box3}(红) = 0.4 imes frac{7}{10} = 0.28)

    step 2 归纳计算

    [egin{align} a_{红白}(box1) & = left[ sum_{i=1}^{3} a_{红}(box_{i})a_{box_{i} box_{1}} ight] b_{box_{1}}(白) \ & =left[ a_{红}(box1) imes 0.5 + a_{红}(box2) imes 0.3 + a_{红}(box3) imes 0.2 ight] imes frac{1}{2} \ & = 0.077 end{align} ]

    [egin{align} a_{红白}(box2) & = left[ sum_{i=1}^{3} a_{红}(box_{i})a_{box_{i} box_{2}} ight] b_{box2}(白) \ & = left[ a_{红}(box1) imes 0.2 + a_{红}(box2) imes 0.5 + a_{红}(box3) imes 0.3 ight] imes frac{3}{5} \ & = 0.1104 end{align} ]

    [egin{align} a_{红白}(box3) & = left[ sum_{i=1}^{3} a_{红}(box_{i})a_{box_{i} box_{3}} ight] b_{box_{3}}(白) \ & = left[ a_{红}(box1) imes 0.3 + a_{红}(box2) imes 0.2 + a_{红}(box3) imes 0.5 ight] imes frac{3}{10} \ & = 0.0606 end{align} ]

    [egin{align} a_{红白红}(box1) & = left[ sum_{i=1}^{3} a_{红白}(box_{i}) a_{box_{i}box1} ight] b_{box1}(红) \ & = left[ a_{红白}(box1) imes 0.5 + a_{红白}(box2) imes 0.3 + a_{红白}(box3) imes 0.2 ight] imes frac{1}{2} \ & = 0.04187 end{align} ]

    [egin{align} a_{红白红}(box2) & = left[ sum_{i=1}^{3} a_{红白}(box_{i}) a_{box_{i}box2} ight] b_{box2}(红) \ & = left[ a_{红白}(box1) imes 0.2 + a_{红白}(box2) imes 0.5 + a_{红白}(box3) imes 0.3 ight] imes frac{2}{5} \ & = 0.035512 end{align} ]

    [egin{align} a_{红白红}(box3) & = left[ sum_{i=1}^{3} a_{红白}(box_{i}) a_{box_{i}box3} ight] b_{box3}(红) \ & = left[ a_{红白}(box1) imes 0.3 + a_{红白}(box2) imes 0.2 + a_{红白}(box3) imes 0.5 ight] imes frac{7}{10} \ & = 0.052836 end{align} ]

    step 3 求和终结

    [egin{align} P(O | mu) & = sum_{i=1}^{3}a_{红白红} (box_{i}) \ & = a_{红白红}(box1) + a_{红白红}(box2) + a_{红白红}(box3) \ & = 0.04187 + 0.035512 + 0.052836 \ & = 0.130218 end{align} ]

    3. 试用维特比算法,求解观测序列{红,白,红}的最优状态序列。 (要求给详细计算过程)

    假设从盒子中取球是放回抽样概率模型。

    step 1 初始化

    (delta_{红}(box1) = pi_{box1}b_{box1}(红) = 0.2 imes frac{1}{2} = 0.1)

    (delta_{红}(box2) = pi_{box2}b_{box2}(红) = 0.4 imes frac{2}{5} = 0.16)

    (delta_{红}(box3) = pi_{box3}b_{box3}(红) = 0.4 imes frac{7}{10} = 0.28)

    (varphi_{红}(box1) = 0)

    (varphi_{红}(box2) = 0)

    (varphi_{红}(box3) = 0)

    step 2 归纳计算 1

    [egin{align} delta_{红白}(box1) & = max left[ delta_{红}(box1)a_{box1box1} , delta_{红}(box2)a_{box2box1} , delta_{红}(box3)a_{box3box1} ight] b_{box1}(白) \ & = 0.28 imes 0.2 imes frac{1}{2} \ & = 0.028 end{align} ]

    [egin{align} delta_{红白}(box2) & = max left[ delta_{红}(box1)a_{box1box2} , delta_{红}(box2)a_{box2box2} , delta_{红}(box3)a_{box3box2} ight] b_{box1}(白) \ & = 0.28 imes 0.3 imes frac{3}{5} \ & = 0.0504 end{align} ]

    [egin{align} delta_{红白}(box3) & = max left[ delta_{红}(box1)a_{box1box3} , delta_{红}(box2)a_{box2box3} , delta_{红}(box3)a_{box3box3} ight] b_{box3}(白) \ & = 0.28 imes 0.5 imes frac{3}{10} \ & = 0.042 end{align} ]

    记忆回退路径 1

    [egin{align} varphi_{红白}(box1) & = argmax left[ delta_{红}(box1)a_{box1box1} , delta_{红}(box2)a_{box2box1} , delta_{红}(box3)a_{box3box1} ight] b_{box1}(白) \ & = frac{1}{2} delta_{红}(box3)a_{box3box1} end{align} ]

    [egin{align} varphi_{红白}(box2) & = argmax left[ delta_{红}(box1)a_{box1box2} , delta_{红}(box2)a_{box2box2} , delta_{红}(box3)a_{box3box2} ight] b_{box2}(白) \ & = frac{3}{5} delta_{红}(box3) a_{box3box2} end{align} ]

    [egin{align} delta_{红白}(box3) & = argmax left[ delta_{红}(box1)a_{box1box3} , delta_{红}(box2)a_{box2box3} , delta_{红}(box3)a_{box3box3} ight] b_{box3}(白) \ & = frac{3}{10} delta_{红}(box3)a_{box3box3} \ end{align} ]

    归纳计算 2

    [egin{align} delta_{红白红}(box1) & = max left[ delta_{红白}(box1)a_{box1box1} , delta_{红白}(box2)a_{box2box1} , delta_{红白}(box3)a_{box3box1} ight] b_{box1}(红) \ & = 0.0504 imes 0.3 imes frac{1}{2} \ & = 0.0756 end{align} ]

    [egin{align} delta_{红白红}(box2) & = max left[ delta_{红白}(box1)a_{box1box2} , delta_{红白}(box2)a_{box2box2} , delta_{红白}(box3)a_{box3box2} ight] b_{box1}(红) \ & = 0.0504 imes 0.5 imes frac{2}{5} \ & = 0.01008 end{align} ]

    [egin{align} delta_{红白红}(box3) & = max left[ delta_{红白}(box1)a_{box1box3} , delta_{红白}(box2)a_{box2box3} , delta_{红白}(box3)a_{box3box3} ight] b_{box3}(红) \ & = 0.042 imes 0.5 imes frac{7}{10} \ & = 0.0147 end{align} ]

    记忆回退路径 2

    [egin{align} varphi_{红白红}(box1) & = argmax left[ delta_{红白}(box1)a_{box1box1} , delta_{红白}(box2)a_{box2box1} , delta_{红白}(box3)a_{box3box1} ight] b_{box1}(红) \ & = frac{1}{2} delta_{红}(box2)a_{box2box1} end{align} ]

    [egin{align} varphi_{红白红}(box2) & = argmax left[ delta_{红白}(box1)a_{box1box2} , delta_{红白}(box2)a_{box2box2} , delta_{红白}(box3)a_{box3box2} ight] b_{box2}(红) \ & = frac{2}{5} delta_{红白}(box2) a_{box2box2} end{align} ]

    [egin{align} delta_{红白红}(box3) & = argmax left[ delta_{红白}(box1)a_{box1box3} , delta_{红白}(box2)a_{box2box3} , delta_{红白}(box3)a_{box3box3} ight] b_{box3}(白) \ & = frac{7}{10} delta_{红白}(box3)a_{box3box3} \ end{align} ]

    step 3 终结

    [egin{align} hat{Q}_{红白红} & = argmax left[ delta_{红白红}(box1) , delta_{红白红}(box2) , delta_{红白红}(box3) ight] \ & = delta_{红白红}(box3) end{align} ]

    [egin{align} hat{P}(hat{Q}_{红白红}) & = max left[ delta_{红白红}(box1) , delta_{红白红}(box2) , delta_{红白红}(box3) ight] \ & = 0.0147 end{align} ]

    step 4 路径(状态序列)回溯

    [egin{align} hat{q}_{红白} = varphi_{红白红}(hat{q}_{红白红}) = varphi_{红白红} left[ delta_{红白红}(box3) ight] end{align} ]

    [egin{align} hat{q}_{红} = varphi_{红白}(hat{q}_{红白}) = varphi_{红白} left[ delta_{红白}(box2) ight] end{align} ]

    [egin{align} hat{q} = varphi_{红}(hat{q}_{红}) = varphi_{红} left[ delta_{红}(box3) ight] end{align} ]

  • 相关阅读:
    组合数问题
    [Repost] 悬线法
    图论 List
    杂项 List
    动态规划 List
    Binary Search
    树状数组,Fenwick Tree
    HDU1086判断线段相交
    高效大数模板
    HDUOJ2298三分加二分
  • 原文地址:https://www.cnblogs.com/fengyubo/p/6701172.html
Copyright © 2011-2022 走看看