最大子矩阵和
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#problem/F
题目:
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
题意:
求矩阵中和最大的小矩阵,输出该和。
分析:
把第j列前i个数的和放入a[i][j]中,求第i行到第j行之间的最大和矩阵的时候,就以i行和j行之间的同一列的数字的和为累加数字进行比较,然后dp求这个数列的最大和连续子序列。
1 #include<iostream> 2 #include<cstring> 3 using namespace std; 4 int a[105][105]; 5 int main() 6 { 7 int n,i,j,x,Max; 8 while(cin>>n) 9 { 10 Max=0; 11 memset(a,0,sizeof(a)); 12 for(i=1;i<=n;i++) 13 { 14 for(j=1;j<=n;j++) 15 { 16 cin>>x; 17 a[i][j]=a[i-1][j]+x; 18 } 19 } 20 for(i=1;i<=n;i++) 21 { 22 for(j=i;j<=n;j++) 23 { 24 int sum=0; 25 for(int k=1;k<=n;k++) 26 { 27 x=a[j][k]-a[i-1][k]; 28 sum=sum+x; 29 if(sum>Max) 30 Max=sum; 31 if(sum<0) sum=0; 32 } 33 } 34 } 35 cout<<Max<<endl; 36 } 37 return 0; 38 }