zoukankan      html  css  js  c++  java
  • Common Subsequence LCS

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F

    题目:

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    分析:

     这个就是LCS的裸体。

    状态转移方程:
    
    
        若a[i] = b[j] dp[i][j] = dp[i-1][j-1] + 1
    
    
        若a[i] != b[j] dp[i][j] = max(dp[i-1][j],dp[i][j-1])
     
    #include<iostream>  
    #include<cstring> 
    #include<cstdio>
    using namespace std;  
    char a[1000],b[1000];
    int dp[1000][1000];
    int max(int a,int b)
    {
    if(a>b) return a;
    else return b;
    }
    int main()
    {
        int t,i,j;
        while(scanf("%s%s",a,b)!=EOF)
        {     
            memset(dp,0,sizeof(dp));
         int n=strlen(a);
         int m=strlen(b);
         for(i=1;i<=n;i++)
             for(j=1;j<=m;j++)
             {     
                 if(a[i-1]==b[j-1])
                      dp[i][j]=dp[i-1][j-1]+1;
                 else 
                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
             }
                 cout<<dp[n][m]<<endl;
        }
    
        return 0;
    }
     
  • 相关阅读:
    log4j学习总结
    MAVEN工程生成可执行的jar包
    从svn上下载maven项目import cannot resolved
    junit4使用说明
    uml中箭头的意思
    maven命令
    mavenSvn
    ASP.NET MVC学习笔记:(二)return View(...)
    WPF学习笔记:(一)数据绑定与DataContext
    WCF学习笔记(五):svc、config和code文件之间的关系
  • 原文地址:https://www.cnblogs.com/fenhong/p/4734833.html
Copyright © 2011-2022 走看看