zoukankan      html  css  js  c++  java
  • Common Subsequence LCS

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F

    题目:

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    分析:

     这个就是LCS的裸体。

    状态转移方程:
    
    
        若a[i] = b[j] dp[i][j] = dp[i-1][j-1] + 1
    
    
        若a[i] != b[j] dp[i][j] = max(dp[i-1][j],dp[i][j-1])
     
    #include<iostream>  
    #include<cstring> 
    #include<cstdio>
    using namespace std;  
    char a[1000],b[1000];
    int dp[1000][1000];
    int max(int a,int b)
    {
    if(a>b) return a;
    else return b;
    }
    int main()
    {
        int t,i,j;
        while(scanf("%s%s",a,b)!=EOF)
        {     
            memset(dp,0,sizeof(dp));
         int n=strlen(a);
         int m=strlen(b);
         for(i=1;i<=n;i++)
             for(j=1;j<=m;j++)
             {     
                 if(a[i-1]==b[j-1])
                      dp[i][j]=dp[i-1][j-1]+1;
                 else 
                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
             }
                 cout<<dp[n][m]<<endl;
        }
    
        return 0;
    }
     
  • 相关阅读:
    servlet生命周期总结
    两周找工作有感
    PowerBuilder中新建PBL
    oracle navicat 可视化操作进行数据的修改
    oracle for update for update nowait
    表中字段为关键字,查询字段加引号
    愿你
    oracle安装注意
    随笔
    JeeSite功能模块解读,功能介绍,功能实现
  • 原文地址:https://www.cnblogs.com/fenhong/p/4734833.html
Copyright © 2011-2022 走看看