zoukankan      html  css  js  c++  java
  • Max Sum Plus Plus——A

                                                      A. Max Sum Plus Plus

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     

    Input

    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     

    Output

    Output the maximal summation described above in one line.
     

    Sample Input

    1 3 1 2 3
    2 6 -1 4 -2 3 -2 3 (子段1: 4;子段2:3 -2 3)

    Sample Output

    6
    8

    Hint

    Huge input, scanf and dynamic programming is recommended.
     
    题意:求最大M子段和
    #include <iostream>
    #include<cmath>
    #include<cstring>
    using namespace std;
    const int MAX=1000010;
    const int INF=0x7fffffff;
    int a[MAX];
    int b[MAX];
    int c[MAX];
    int main()
    {
        int m,n;
        while(cin>>n>>m)
        {
            for(int i=1;i<=m;i++)
                cin>>a[i];
            memset(b,0,sizeof(b));
            memset(c,0,sizeof(c));
            int maxn;
            for(int i=1;i<=n;i++)
            {
                maxn=(-1)*INF;
                for(int j=i;j<=m;j++)
                {
                    b[j]=max(b[j-1]+a[j],c[j-1]+a[j]);
                    c[j-1]=maxn;
                    if(b[j]>maxn)
                        maxn=b[j];
                }
            }
            cout<<maxn<<endl;
        }
        return 0;
    }
  • 相关阅读:
    5、include为应用指定多个struts配置文件
    4、struts处理流程和action的管理方式
    8、类型转换器
    7、请求参数接收
    UESTC 2014 Summer Training #6 Div.2
    Codeforces Round #FF
    css ul li去除圆点
    css a标签去除下划线
    Axure的热区元件的作用
    结组开发项目(TD学生助手)
  • 原文地址:https://www.cnblogs.com/fenhong/p/5290703.html
Copyright © 2011-2022 走看看