zoukankan      html  css  js  c++  java
  • hdu3714 Error Curves

    题目:

    Error Curves

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1151    Accepted Submission(s): 440


    Problem Description
    Josephina is a clever girl and addicted to Machine Learning recently. She
    pays much attention to a method called Linear Discriminant Analysis, which
    has many interesting properties.
    In order to test the algorithm's efficiency, she collects many datasets.
    What's more, each data is divided into two parts: training data and test
    data. She gets the parameters of the model on training data and test the
    model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



    It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
     


    Input
    The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
     


    Output
    For each test case, output the answer in a line. Round to 4 digits after the decimal point.
     


    Sample Input
    2 1 2 0 0 2 2 0 0 2 -4 2
     


    Sample Output
    0.0000 0.5000

    题意:

         这题给n个二项式,定义F(x)为x在(0,1000)这个范围内的所有二项式的最大值,求F(x)的最小值。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #define N  1e-15
    using namespace std;
    const int MAXN=10005;
     int t,n;
    int a[MAXN],b[MAXN],c[MAXN];
    double hanshu(double x)
    {
        double y=a[0]*x*x+b[0]*x+c[0];
        for(int i=1;i<n;i++)
         y=max(y,a[i]*x*x+b[i]*x+c[i]);
         return y;
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            for(int i=0;i<n;i++)
                scanf("%d%d%d",&a[i],&b[i],&c[i]);
             double left=0,right=1000;
             double mid1,mid2;
             while(left+N<right)
             {
                  mid1=(left+right)/2;
                   mid2=(right+mid1)/2;
                 if(hanshu(mid1)>hanshu(mid2))
                        left=mid1;
                 else right=mid2;
             }
           double z=hanshu(right);
             printf("%.4lf
    ",z);
        }
        return 0;
    }
  • 相关阅读:
    “Hello World!”团队第七次Scrum立会
    20170928-2 单元测试,结对
    20170928-4 每周例行报告
    20170928-3 四则运算试题生成
    20170928-1 代码规范,结对要求
    软件工程第六次作业——例行报告
    软件工程第四次作业-2单元测试
    软件工程第四次作业-4每周例行报告
    软件工程第四次作业-3四则运算
    软件工程第四次作业-1代码规范
  • 原文地址:https://www.cnblogs.com/fenhong/p/6719622.html
Copyright © 2011-2022 走看看