Squirrel Liss is interested in sequences. She also has preferences of integers. She thinks n integers a1, a2, ..., an are good.
Now she is interested in good sequences. A sequence x1, x2, ..., xk is called good if it satisfies the following three conditions:
- The sequence is strictly increasing, i.e. xi < xi + 1 for each i (1 ≤ i ≤ k - 1).
- No two adjacent elements are coprime, i.e. gcd(xi, xi + 1) > 1 for each i (1 ≤ i ≤ k - 1) (where gcd(p, q) denotes the greatest common divisor of the integers p and q).
- All elements of the sequence are good integers.
Find the length of the longest good sequence.
The input consists of two lines. The first line contains a single integer n (1 ≤ n ≤ 105) — the number of good integers. The second line contains a single-space separated list of good integers a1, a2, ..., an in strictly increasing order (1 ≤ ai ≤ 105; ai < ai + 1).
Print a single integer — the length of the longest good sequence.
5
2 3 4 6 9
4
9
1 2 3 5 6 7 8 9 10
4
In the first example, the following sequences are examples of good sequences: [2; 4; 6; 9], [2; 4; 6], [3; 9], [6]. The length of the longest good sequence is 4.
题意
给一个严格递增的序列,求出最长的相邻元素不互质的递增序列。
分析
不互质则必有相同的因子,那么只要相邻的有相同的因子,那么就可以一段拼一段,从而拼出最长的。先预处理每个数的因子,对于当前序列,处理每个数的因子出现的次数,用来更新维护dp[i](最后一对元素的公共因子为i的最长长度),即先从该数的所以因子中选出dp值最大的那个,这就说明当前这个数可以拼接上去,形成新的序列,长度+1,此时再更新当前数的所有因子的dp值。最后再遍历一边,找出最大长度。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<algorithm> #include<cstring> #include<queue> using namespace std; typedef long long LL; const int maxn = 1e5+5; const int mod = 772002+233; typedef pair<int,int> pii; #define X first #define Y second #define pb push_back #define mp make_pair #define ms(a,b) memset(a,b,sizeof(a)) vector<int> p[maxn]; int n; void init(){ for(int i=2;i<maxn;i++){ for(int j=i;j<maxn;j+=i){ p[j].pb(i); } } } int a[maxn]; int d[maxn]; int main(){ // freopen("in.txt","r",stdin); init(); scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",&a[i]); for(int i=0;i<n;i++){ int maxx=0; for(int j=0;j<p[a[i]].size();j++){ // cout<<p[a[i]][j]<<" "; maxx = max(maxx,d[p[a[i]][j]]); } for(int j=0;j<p[a[i]].size();j++){ d[p[a[i]][j]]=maxx+1; } // puts(""); } int maxx = 1; for(int i=0;i<maxn;i++) maxx = max(maxx,d[i]); cout<<maxx; return 0; }