zoukankan      html  css  js  c++  java
  • 使用邮件监控Mxnet训练

    1. 前言

    受到小伙伴的启发,就自己动手写了一个使用邮件监控Mxnet训练的例子。整体不算复杂。

    2. 设置一些全局参数

    邮箱服务的pop,smtp地址,邮箱账号,接受邮箱号和密码以及当前训练状态
    还有训练的超参数和保存路径和文件名参数等

    pophost = 'pop.126.com'
    smtphost = 'smtp.126.com'
    useremail = 'trainmonitor@126.com'
    toemail = 'fiercewind@outlook.com'
    password = '123456'
    
    running = False
    
    params = {'ep': 10, 'lr': 0.002, 'bs': 128, 'wd': 0.0}
    nameparams = {'dir':'./','params':'NN.params','png':'NN.png'}
    

    3. 打包训练代码

    需要进行监控训练,所以需要将训练的代码打包进一个函数内,通过传参的方式进行训练。还是使用FashionMNIST数据集
    这样训练的时候就调用函数传参就行了

    3.1 训练主函数

    训练需要的一些参数都采用传参的形式
    这里我新加了一个名叫nameparams的参数,用于设置曲线图,保存的参数文件的路径和文件名

    def NN_Train(net, train_data, test_data,params,nameparams):
        msg = ''
    
        epochs = int(params['ep'])
        batch_size = int(params['bs'])
        learning_rate = params['lr']
        weight_decay = params['wd']
    
        train_loss = []
        train_acc = []
        dataset_train = gluon.data.DataLoader(train_data, batch_size, shuffle=True)
        test_loss = []
        test_acc = []
        dataset_test = gluon.data.DataLoader(test_data, batch_size, shuffle=True)
    
        trainer = gluon.Trainer(net.collect_params(), 'adam',
                                {'learning_rate': learning_rate,
                                 'wd': weight_decay})
        softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
    
        for epoch in range(epochs):
            _loss = 0.
            _acc = 0.
            t_acc = 0.
            for data, label in dataset_train:
                data = nd.transpose(data, (0, 3, 1, 2))
                data = data.as_in_context(ctx)
                label = label.as_in_context(ctx)
                with autograd.record():
                    output = net(data)
                    loss = softmax_cross_entropy(output, label)
                loss.backward()
                trainer.step(batch_size)
    
                _loss += nd.mean(loss).asscalar()
                _acc += accuracy(output, label)
            __acc = _acc / len(dataset_train)
            __loss = _loss / len(dataset_train)
            train_loss.append(__loss)
            train_acc.append(__acc)
    
            t_acc, t_loss = evaluate_accuracy(dataset_test, net)
            test_loss.append(t_loss)
            test_acc.append(t_acc)
    
            msg += ("Epoch %d. Train Loss: %f, Test Loss: %f, Train Acc %f, Test Acc %f
    " % (
                epoch, __loss, t_loss, __acc, t_acc))
    
        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax1.plot(train_loss, 'r')
        ax1.plot(test_loss, 'g')
        ax1.legend(['Train_Loss', 'Test_Loss'], loc=2)
        ax1.set_ylabel('Loss')
    
        ax2 = ax1.twinx()
        ax2.plot(train_acc, 'b')
        ax2.plot(test_acc, 'y')
        ax2.legend(['Train_Acc', 'Test_Acc'], loc=1)
        ax2.set_ylabel('Acc')
    
        plt.savefig(os.path.join(nameparams['dir'],nameparams['png']), dpi=600)
        net.save_params(os.path.join(nameparams['dir'],nameparams['params']))
        return msg
    

    3.2 打包网络模型

    同样,需要把网络也打包进函数内

    def GetNN():
        net = nn.HybridSequential()
        with net.name_scope():
            net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
            net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
            net.add(gluon.nn.Conv2D(channels=50, kernel_size=3, activation='relu'))
            net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
            net.add(gluon.nn.Flatten())
            net.add(gluon.nn.Dense(10))
        net.initialize(init=mx.init.Xavier(), ctx=ctx)
        net.hybridize()
        return net
    

    3.3 打包数据读取

    然后把数据读取也搞进函数内

    def GetDate():
        fashion_train = gluon.data.vision.FashionMNIST(
            root='./', train=True, transform=transform)
        fashion_test = gluon.data.vision.FashionMNIST(
            root='./', train=True, transform=transform)
        return fashion_train, fashion_test
    

    4. 搞定邮件的接收发送

    使用邮件监控,就要搞定在Python上使用邮件的问题,还好Python内置了邮件库
    这样接收发送邮件也只用调用函数就好了

    4.1 接受邮件

    我只接受纯文本的内容,因为HTML内容的太过复杂

    def ReEmail():
        try:
            pp = poplib.POP3(pophost)
            pp.user(useremail)
            pp.pass_(password)
            resp, mails, octets = pp.list()
            index = len(mails)
            if index > 0:
                resp, lines, octets = pp.retr(index)
                msg_content = b'
    '.join(lines).decode('utf-8')
                pp.dele(index)
                pp.quit()
                msg = Parser().parsestr(msg_content)
                message = Get_info(msg)
                subject = msg.get('Subject')
                date = msg.get('Date')
                return message,subject,date
        except ConnectionResetError as e:
            print('ConnectionResetError')
        return None,None,None
    

    4.2 发送邮件

    发送邮件我是用了一个第三方邮件库envelopes,因为简单方便。

    def SentEmail(message, subject,imgpath):
        envelope = Envelope(
            from_addr=(Global.useremail, u'Train'),
            to_addr=(Global.toemail, u'FierceX'),
            subject=subject,
            text_body=message
        )
        if imgpath is not None:
            envelope.add_attachment(imgpath)
    
        envelope.send(Global.smtphost, login=Global.useremail,
                      password=Global.password, tls=True)
    

    4.3 解析邮件内容

    然后需要解析邮件内容,这段基本从网上抄来的,因为邮件格式很复杂,没深究

    def Get_info(msg):
        if (msg.is_multipart()):
            parts = msg.get_payload()
            for n, part in enumerate(parts):
                return Get_info(part)
        if not msg.is_multipart():
            content_type = msg.get_content_type()
            if content_type=='text/plain':
                content = msg.get_payload(decode=True)
                charset = guess_charset(msg)
                if charset:
                    content = content.decode(charset)
                return content
    

    5. 使用责任链模式解析命令

    在解析命令里,我使用了责任链模式,并且设置了一个前台类,可以添加新的命令解析类,具体看代码

    5.1 责任链基类

    我在责任链基类里实现了判断当前命令是否是该对象可执行的命令,这样在编写命令解析类时,就可以忽略判断条件,直接重写解析方法Work即可

    class BaseCmd:
        def __init__(self, cmd):
            self.Next = None
            self.cmd = cmd
    
        def SetNext(self, n):
            self.Next = n
    
        def DoAnalysis(self, cmd, params):
            if cmd == self.cmd:
                self.Work(params)
            elif self.Next is not None:
                self.Next.DoAnalysis(cmd, params)
    
        def Work(self, params):
            pass
    

    5.2 责任链前台类

    在前台类里,我添加了一个Add方法,用于添加新的命令解析类,在此方法里我自动添加该解析类到责任链的尾部。

    class CmdAnaly:
        def __init__(self):
            self.CmdList = []
            self.Add(ExitCmd('exit'))
            self.Add(TrainCmd('train'))
            self.Add(SetNameParamsCmd('setname'))
    
        def Add(self, cmd):
            self.CmdList.append(cmd)
            if len(self.CmdList) > 1:
                self.CmdList[len(self.CmdList) - 2].SetNext(self.CmdList[len(self.CmdList) - 1])
    
        def Analy(self, cmd, params):
            self.CmdList[0].DoAnalysis(cmd, params)
    

    5.3 命令解析类

    我只编写了三个命令解析类

    训练类

    class TrainCmd(BaseCmd):
        def __init__(self, cmd):
            BaseCmd.__init__(self, cmd)
    
        def Work(self, msg):
            print('train')
            if Global.running == False:
                xx = msg.split('
    ')
                for k in xx:
                    ks = k.split(' ')
                    if len(ks) > 1:
                        Global.params[ks[0]] = float(ks[1])
                t = threading.Thread(target=run)
                t.start()
            else:
                message = ('Training is underway
    %s
    %s') % 
                (str(Global.params),str(Global.nameparams))
                EmailTool.SentEmail(message,
                                    'Training is underway',
                                    None)
    

    退出类

    class ExitCmd(BaseCmd):
        def __init__(self, cmd):
            BaseCmd.__init__(self, cmd)
    
        def Work(self, params):
            print('exit')
            os._exit(0)
    

    设置图片,参数文件名称和保存路径类

    class SetNameParamsCmd(BaseCmd):
        def __init__(self,cmd):
            BaseCmd.__init__(self,cmd)
        
        def Work(self,msg):
            xx = msg.split('
    ')
            for k in xx:
                 ks = k.split(' ')
                 if len(ks) > 1:
                     Global.nameparams[ks[0]] = ks[1]
            print(Global.nameparams)
            EmailTool.SentEmail(str(Global.nameparams),'NameParams',None)
    

    6. 使用多线程多进程监控训练

    由于Python的多线程的性能局限性,我使用了子进程进行训练,这样不会受到主进程循环监控的影响

    def nn(params,nameparams):
        train, test = NN_Train.GetDate()
        print(params)
        print(nameparams)
        msg = ('%s
    ') % str(params)
        msg += ('%s
    ') % str(nameparams)
        msg += NN_Train.NN_Train(
            NN_Train.GetNN(),
            train_data=train,
            test_data=test,
            params = params,
            nameparams = nameparams)
        EmailTool.SentEmail(msg, 'TrainResult',os.path.join(nameparams['dir'],nameparams['png']))
    
    def run():
        p = Process(target=nn,args=(Global.params,Global.nameparams,))
        print('TrainStrart')
        Global.running = True
        p.start()
        p.join()
        Global.running = False
    

    7. 使用循环监控邮箱

    在主进程中,使用循环监控邮箱内容并解析邮件命令,交给命令解析类解析处理。

    if __name__ == '__main__':
        Global.running = False
        cmdana = CmdAnalysis.CmdAnaly()
        print('Start')
        a = 1
        while(True):
            time.sleep(10)
            print(a, Global.running)
            try:
                msg, sub, date = EmailTool.ReEmail()
            except TimeoutError as e:
                print('TimeoutError')
            cmdana.Analy(sub, msg)
            a += 1
    

    8. 效果

    发送训练邮件

    训练结束返回结果

    9. 结语

    使用邮件监控并不太复杂,主要在于邮件的解析。邮件格式太复杂,如果全都在主题里,参数多了会显得很乱。
    根据需要添加新的命令解析类,然后在前台类里里使用Add方法添加进去就行了。
    总之我认为在aws上训练还是可以一用的,总不能一直连着终端。
    完整代码

  • 相关阅读:
    CAD输出图至Word
    win7激活工具
    IP地址出现错误
    x%内存可用的问题解决
    第一次来到博客园
    ++x和x++
    标准输入流输出流以及错误流
    关于main函数的参数
    hdu1465 动态规划
    静态变量(static)的特点
  • 原文地址:https://www.cnblogs.com/fiercex/p/7656706.html
Copyright © 2011-2022 走看看