题意:
给三个线段(每个线段的两个端点的坐标),问这三个线段能否组成字母A。
组成字母A的条件:
1.两个线段有公共端点。
2.这两个线段夹角小于等于90度。
3.第三个线段的两个端点分别在这两个线段上,且各自分割的大小比率不超过4:1
思路:
直接。。。。。
应该开始积累计算几何的代码了,,,,
代码:
struct Point{ double x,y; }; struct segment{ Point a,b; } S[5]; bool samePoint(Point a,Point b){ if(fabs(a.x-b.x)<eps && fabs(a.y-b.y)<eps){ return true; } return false; } bool PointOnSegment(Point a,segment L){ if((a.x-L.a.x)*(L.b.y-L.a.y)==(a.y-L.a.y)*(L.b.x-L.a.x) && min(L.a.x,L.b.x)<=a.x && a.x<=max(L.a.x,L.b.x) && min(L.a.y,L.b.y)<=a.y && a.y<=max(L.a.y,L.b.y)){ return true; } return false; } double rates(Point a,segment L){ double l1=(a.x-L.a.x)*(a.x-L.a.x)+(a.y-L.a.y)*(a.y-L.a.y); double l2=(a.x-L.b.x)*(a.x-L.b.x)+(a.y-L.b.y)*(a.y-L.b.y); if(l1<eps || l2<eps){ return 999999.0; } if(l1<l2){ return l2/l1; } else{ return l1/l2; } } ll Cos(double x1,double y1,double x2,double y2){ if(x1*x2+y1*y2>=0){ return true; } return false; } bool solve(){ //1 and 2 bool t1=samePoint(S[1].a,S[2].a); bool t2=samePoint(S[1].a,S[2].b); bool t3=samePoint(S[1].b,S[2].a); bool t4=samePoint(S[1].b,S[2].b); if(t1||t2||t3||t4){ bool flag=false; if(t1){ double x1,y1,x2,y2; x1=S[1].b.x-S[1].a.x; y1=S[1].b.y-S[1].a.y; x2=S[2].b.x-S[2].a.x; y2=S[2].b.y-S[2].a.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t2){ double x1,y1,x2,y2; x1=S[1].b.x-S[1].a.x; y1=S[1].b.y-S[1].a.y; x2=S[2].a.x-S[2].b.x; y2=S[2].a.y-S[2].b.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t3){ double x1,y1,x2,y2; x1=S[1].a.x-S[1].b.x; y1=S[1].a.y-S[1].b.y; x2=S[2].b.x-S[2].a.x; y2=S[2].b.y-S[2].a.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t4){ double x1,y1,x2,y2; x1=S[1].a.x-S[1].b.x; y1=S[1].a.y-S[1].b.y; x2=S[2].a.x-S[2].b.x; y2=S[2].a.y-S[2].b.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(flag){ if(PointOnSegment(S[3].a,S[1]) && PointOnSegment(S[3].b,S[2])){ if(rates(S[3].a,S[1])<=16.0 && rates(S[3].b,S[2])<=16.0){ return true; } } if(PointOnSegment(S[3].b,S[1]) && PointOnSegment(S[3].a,S[2])){ if(rates(S[3].b,S[1])<=16.0 && rates(S[3].a,S[2])<=16.0){ return true; } } } } //1 and 3 t1=samePoint(S[1].a,S[3].a); t2=samePoint(S[1].a,S[3].b); t3=samePoint(S[1].b,S[3].a); t4=samePoint(S[1].b,S[3].b); if(t1||t2||t3||t4){ bool flag=false; if(t1){ double x1,y1,x2,y2; x1=S[1].b.x-S[1].a.x; y1=S[1].b.y-S[1].a.y; x2=S[3].b.x-S[3].a.x; y2=S[3].b.y-S[3].a.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t2){ double x1,y1,x2,y2; x1=S[1].b.x-S[1].a.x; y1=S[1].b.y-S[1].a.y; x2=S[3].a.x-S[3].b.x; y2=S[3].a.y-S[3].b.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t3){ double x1,y1,x2,y2; x1=S[1].a.x-S[1].b.x; y1=S[1].a.y-S[1].b.y; x2=S[3].b.x-S[3].a.x; y2=S[3].b.y-S[3].a.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t4){ double x1,y1,x2,y2; x1=S[1].a.x-S[1].b.x; y1=S[1].a.y-S[1].b.y; x2=S[3].a.x-S[3].b.x; y2=S[3].a.y-S[3].b.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(flag){ if(PointOnSegment(S[2].a,S[1]) && PointOnSegment(S[2].b,S[3])){ if(rates(S[2].a,S[1])<=16.0 && rates(S[2].b,S[3])<=16.0){ return true; } } if(PointOnSegment(S[2].b,S[1]) && PointOnSegment(S[2].a,S[3])){ if(rates(S[2].b,S[1])<=16.0 && rates(S[2].a,S[3])<=16.0){ return true; } } } } //2 and 3 t1=samePoint(S[2].a,S[3].a); t2=samePoint(S[2].a,S[3].b); t3=samePoint(S[2].b,S[3].a); t4=samePoint(S[2].b,S[3].b); if(t1||t2||t3||t4){ bool flag=false; if(t1){ double x1,y1,x2,y2; x1=S[2].b.x-S[2].a.x; y1=S[2].b.y-S[2].a.y; x2=S[3].b.x-S[3].a.x; y2=S[3].b.y-S[3].a.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t2){ double x1,y1,x2,y2; x1=S[2].b.x-S[2].a.x; y1=S[2].b.y-S[2].a.y; x2=S[3].a.x-S[3].b.x; y2=S[3].a.y-S[3].b.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t3){ double x1,y1,x2,y2; x1=S[2].a.x-S[2].b.x; y1=S[2].a.y-S[2].b.y; x2=S[3].b.x-S[3].a.x; y2=S[3].b.y-S[3].a.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(t4){ double x1,y1,x2,y2; x1=S[2].a.x-S[2].b.x; y1=S[2].a.y-S[2].b.y; x2=S[3].a.x-S[3].b.x; y2=S[3].a.y-S[3].b.y; if(Cos(x1,y1,x2,y2)){ flag=true; } } if(flag){ if(PointOnSegment(S[1].a,S[2]) && PointOnSegment(S[1].b,S[3])){ if(rates(S[1].a,S[2])<=16.0 && rates(S[1].b,S[3])<=16.0){ return true; } } if(PointOnSegment(S[1].b,S[2]) && PointOnSegment(S[1].a,S[3])){ if(rates(S[1].b,S[2])<=16.0 && rates(S[1].a,S[3])<=16.0){ return true; } } } } return false; } int T; int main(){ cin>>T; while(T--){ scanf("%lf%lf%lf%lf",&S[1].a.x,&S[1].a.y,&S[1].b.x,&S[1].b.y); scanf("%lf%lf%lf%lf",&S[2].a.x,&S[2].a.y,&S[2].b.x,&S[2].b.y); scanf("%lf%lf%lf%lf",&S[3].a.x,&S[3].a.y,&S[3].b.x,&S[3].b.y); if(solve()){ puts("YES"); }else{ puts("NO"); } } return 0; }