zoukankan      html  css  js  c++  java
  • cf13B Letter A(分类+简单计算几何,,)

    题意:

    给三个线段(每个线段的两个端点的坐标),问这三个线段能否组成字母A。

    组成字母A的条件:

    1.两个线段有公共端点。

    2.这两个线段夹角小于等于90度。

    3.第三个线段的两个端点分别在这两个线段上,且各自分割的大小比率不超过4:1

    思路:

    直接。。。。。

    应该开始积累计算几何的代码了,,,,

    代码:

    struct Point{
        double x,y;
    };
    struct segment{
        Point a,b;
    }
    S[5];
    
    bool samePoint(Point a,Point b){
        if(fabs(a.x-b.x)<eps && fabs(a.y-b.y)<eps){
            return true;
        }
        return false;
    }
    bool PointOnSegment(Point a,segment L){
        if((a.x-L.a.x)*(L.b.y-L.a.y)==(a.y-L.a.y)*(L.b.x-L.a.x)
           && min(L.a.x,L.b.x)<=a.x && a.x<=max(L.a.x,L.b.x)
           && min(L.a.y,L.b.y)<=a.y && a.y<=max(L.a.y,L.b.y)){
                return true;
           }
           return false;
    }
    double rates(Point a,segment L){
        double l1=(a.x-L.a.x)*(a.x-L.a.x)+(a.y-L.a.y)*(a.y-L.a.y);
        double l2=(a.x-L.b.x)*(a.x-L.b.x)+(a.y-L.b.y)*(a.y-L.b.y);
        if(l1<eps || l2<eps){
            return 999999.0;
        }
        if(l1<l2){
            return l2/l1;
        }
        else{
            return l1/l2;
        }
    }
    ll Cos(double x1,double y1,double x2,double y2){
        if(x1*x2+y1*y2>=0){
            return true;
        }
        return false;
    }
    bool solve(){
        //1 and 2
        bool t1=samePoint(S[1].a,S[2].a);
        bool t2=samePoint(S[1].a,S[2].b);
        bool t3=samePoint(S[1].b,S[2].a);
        bool t4=samePoint(S[1].b,S[2].b);
        if(t1||t2||t3||t4){
            bool flag=false;
            if(t1){
                double x1,y1,x2,y2;
                x1=S[1].b.x-S[1].a.x;
                y1=S[1].b.y-S[1].a.y;
                x2=S[2].b.x-S[2].a.x;
                y2=S[2].b.y-S[2].a.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t2){
                double x1,y1,x2,y2;
                x1=S[1].b.x-S[1].a.x;
                y1=S[1].b.y-S[1].a.y;
                x2=S[2].a.x-S[2].b.x;
                y2=S[2].a.y-S[2].b.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t3){
                double x1,y1,x2,y2;
                x1=S[1].a.x-S[1].b.x;
                y1=S[1].a.y-S[1].b.y;
                x2=S[2].b.x-S[2].a.x;
                y2=S[2].b.y-S[2].a.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t4){
                double x1,y1,x2,y2;
                x1=S[1].a.x-S[1].b.x;
                y1=S[1].a.y-S[1].b.y;
                x2=S[2].a.x-S[2].b.x;
                y2=S[2].a.y-S[2].b.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(flag){
                if(PointOnSegment(S[3].a,S[1]) && PointOnSegment(S[3].b,S[2])){
                    if(rates(S[3].a,S[1])<=16.0 && rates(S[3].b,S[2])<=16.0){
                        return true;
                    }
                }
                if(PointOnSegment(S[3].b,S[1]) && PointOnSegment(S[3].a,S[2])){
                    if(rates(S[3].b,S[1])<=16.0 && rates(S[3].a,S[2])<=16.0){
                        return true;
                    }
                }
            }
        }
    
        //1 and 3
         t1=samePoint(S[1].a,S[3].a);
         t2=samePoint(S[1].a,S[3].b);
         t3=samePoint(S[1].b,S[3].a);
         t4=samePoint(S[1].b,S[3].b);
        if(t1||t2||t3||t4){
            bool flag=false;
            if(t1){
                double x1,y1,x2,y2;
                x1=S[1].b.x-S[1].a.x;
                y1=S[1].b.y-S[1].a.y;
                x2=S[3].b.x-S[3].a.x;
                y2=S[3].b.y-S[3].a.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t2){
                double x1,y1,x2,y2;
                x1=S[1].b.x-S[1].a.x;
                y1=S[1].b.y-S[1].a.y;
                x2=S[3].a.x-S[3].b.x;
                y2=S[3].a.y-S[3].b.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t3){
                double x1,y1,x2,y2;
                x1=S[1].a.x-S[1].b.x;
                y1=S[1].a.y-S[1].b.y;
                x2=S[3].b.x-S[3].a.x;
                y2=S[3].b.y-S[3].a.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t4){
                double x1,y1,x2,y2;
                x1=S[1].a.x-S[1].b.x;
                y1=S[1].a.y-S[1].b.y;
                x2=S[3].a.x-S[3].b.x;
                y2=S[3].a.y-S[3].b.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(flag){
                if(PointOnSegment(S[2].a,S[1]) && PointOnSegment(S[2].b,S[3])){
                    if(rates(S[2].a,S[1])<=16.0 && rates(S[2].b,S[3])<=16.0){
                        return true;
                    }
                }
                if(PointOnSegment(S[2].b,S[1]) && PointOnSegment(S[2].a,S[3])){
                    if(rates(S[2].b,S[1])<=16.0 && rates(S[2].a,S[3])<=16.0){
                        return true;
                    }
                }
            }
        }
    
        //2 and 3
        t1=samePoint(S[2].a,S[3].a);
         t2=samePoint(S[2].a,S[3].b);
         t3=samePoint(S[2].b,S[3].a);
         t4=samePoint(S[2].b,S[3].b);
        if(t1||t2||t3||t4){
            bool flag=false;
            if(t1){
                double x1,y1,x2,y2;
                x1=S[2].b.x-S[2].a.x;
                y1=S[2].b.y-S[2].a.y;
                x2=S[3].b.x-S[3].a.x;
                y2=S[3].b.y-S[3].a.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t2){
                double x1,y1,x2,y2;
                x1=S[2].b.x-S[2].a.x;
                y1=S[2].b.y-S[2].a.y;
                x2=S[3].a.x-S[3].b.x;
                y2=S[3].a.y-S[3].b.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t3){
                double x1,y1,x2,y2;
                x1=S[2].a.x-S[2].b.x;
                y1=S[2].a.y-S[2].b.y;
                x2=S[3].b.x-S[3].a.x;
                y2=S[3].b.y-S[3].a.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(t4){
                double x1,y1,x2,y2;
                x1=S[2].a.x-S[2].b.x;
                y1=S[2].a.y-S[2].b.y;
                x2=S[3].a.x-S[3].b.x;
                y2=S[3].a.y-S[3].b.y;
                if(Cos(x1,y1,x2,y2)){
                    flag=true;
                }
            }
            if(flag){
                if(PointOnSegment(S[1].a,S[2]) && PointOnSegment(S[1].b,S[3])){
                    if(rates(S[1].a,S[2])<=16.0 && rates(S[1].b,S[3])<=16.0){
                        return true;
                    }
                }
                if(PointOnSegment(S[1].b,S[2]) && PointOnSegment(S[1].a,S[3])){
                    if(rates(S[1].b,S[2])<=16.0 && rates(S[1].a,S[3])<=16.0){
                        return true;
                    }
                }
            }
        }
    
        return false;
    }
    
    
    int T;
    int main(){
    
        cin>>T;
        while(T--){
            scanf("%lf%lf%lf%lf",&S[1].a.x,&S[1].a.y,&S[1].b.x,&S[1].b.y);
            scanf("%lf%lf%lf%lf",&S[2].a.x,&S[2].a.y,&S[2].b.x,&S[2].b.y);
            scanf("%lf%lf%lf%lf",&S[3].a.x,&S[3].a.y,&S[3].b.x,&S[3].b.y);
            if(solve()){
                puts("YES");
            }else{
                puts("NO");
            }
        }
    
        return 0;
    }
  • 相关阅读:
    继承—泛型
    单例模式
    继承 4—Monkey
    继承 3—A B E
    继承 2—people
    继承 1—Mucic
    面向对象—汽车
    面向对象—封装—汽车
    Linux下查看CPU型号,内存大小,硬盘空间的命令
    redis源码——数据结构与对象
  • 原文地址:https://www.cnblogs.com/fish7/p/4317940.html
Copyright © 2011-2022 走看看