设抛物线方程为(y=ax^2+bx(a<0,b>0)),我们想要求出一组(a,b)使得它尽可能满足更多的要求。这个显然可以二分答案。
如何check当前的(mid)是否合法呢?每一个限制条件形如(y_{i_1}le ax_i^2+bx_ile y_{i_2}),也就是(frac{y_{i_1}}{x_i}le x_ia+ble frac{y_{i_2}}{x_i})。把(a,b)看成自变量,实际上每个不等式就是一个半平面,我们需要求出半平面交。
需要掌握向量、叉积等少量基础算法(不过做到这题的大佬们肯定会了),可以参考xzy巨佬的总结。
有一种(O(n^2))的动态插入半平面的做法,可以通过原题数据(目前最优解第一版大部分是这种写法),也可以参考xzy巨佬的总结。
蒟蒻构造了一组边数很多的半平面交,可以卡掉这种写法,目前rank1的代码本机需要20s以上。
一些hack数据可以从这里下(部分转自liu_runda)
链接: https://pan.baidu.com/s/1Te0G-L2JrRu361qKAGorhQ
提取码: ea9m
谈一谈正经的(O(nlog n))的实现吧。以下内容从蒟蒻的总结里㧟的。
我们用有向直线(一个点和一个方向向量)表示半平面,以下默认半平面在有向直线的左侧。
对有向直线按方向向量的极角排序,维护一个双端队列,存储当前构成半平面的直线以及相邻两直线的交点。
每次加入一条有向直线,如果队首/队尾的交点在直线右侧(用叉积判)则弹掉队首/队尾的直线。
为什么这样是对的呢?因为加入直线的单调性,所以要被弹出的直线一定在队首或队尾。感兴趣的话可以自己手画一些例子来理解。
需要注意的细节:
- 加入直线时,先弹队尾,再弹队首。
- 最后还要检查队尾交点是否在队首直线的右侧,如果是也要弹掉。
- 特判平行直线,在右侧的要弹掉。
- 如果题目给出的半平面不一定有限制边界,则应该手动加入一个INF边界。
算法的复杂度瓶颈在排序,因此预先将这些有向直线排好序,二分check时忽略编号大于mid的直线就可以了。时间复杂度(O(nlog n))。
注意这题的坐标范围是(1e9)范围,因此INF设到(1e10)以上,EPS设到(1e-10)以下。
#include<bits/stdc++.h>
#define RG register
#define I inline
#define R RG int
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
using namespace std;
typedef double DB;
const int SZ=1<<19,N=2e5+9;
const DB INF=1e11,EPS=1e-11;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
struct Vec{
DB x,y;
I Vec(){}
I Vec(DB a,DB b){x=a;y=b;}
I Vec operator+(Vec a){return Vec(x+a.x,y+a.y);}
I Vec operator-(Vec a){return Vec(x-a.x,y-a.y);}
I Vec operator*(DB a){return Vec(x*a,y*a);}//数乘
I DB operator^(Vec a){return x*a.y-y*a.x;}//叉积
}k[N];
struct Line{
Vec p,v;DB ang;int id;
I Line(){}
I Line(Vec a,Vec b,R c){p=a,v=b-a,ang=atan2(v.y,v.x),id=c;}
I bool operator<(Line&a){return ang<a.ang;}
I bool Right(Vec&a){return (v^(a-p))<-EPS;}
I friend Vec Cross(Line&a,Line&b){//求直线交点
return a.p+a.v*((b.v^(b.p-a.p))/(b.v^a.v));
}
}a[N],q[N];
int p=0,l=1,r,mid;
bool HalfPlane(Line*a,Line*e){//求半平面是否有交
R n=e-a,i=0,h=0,t=0;
while(a[i].id>mid)++i;
for(q[0]=a[i++];i<n;++i){
if(a[i].id>mid)continue;
while(h<t&&a[i].Right(k[t-1]))--t;
while(h<t&&a[i].Right(k[h]))++h;
if(a[i].ang!=q[t].ang)q[++t]=a[i];
else if(a[i].Right(q[t].p))q[t]=a[i];
if(h<t)k[t-1]=Cross(q[t-1],q[t]);
}
while(h<t&&q[h].Right(k[t-1]))--t;
return t-h>1;
}
int main(){
r=in();
for(R i=1;i<=r;++i){
DB x=in(),y1=in(),y2=in();
a[++p]=Line(Vec(0,y1/x),Vec(1,y1/x-x),i);
a[++p]=Line(Vec(1,y2/x-x),Vec(0,y2/x),i);
}//边界要设EPS不能设0,因为a、b为0均不合题意
a[++p]=Line(Vec(-INF,EPS),Vec(-EPS,EPS),0);
a[++p]=Line(Vec(-EPS,EPS),Vec(-EPS,INF),0);
a[++p]=Line(Vec(-EPS,INF),Vec(-INF,INF),0);
a[++p]=Line(Vec(-INF,INF),Vec(-INF,EPS),0);
sort(a+1,a+p+1);
while(l<r){
mid=(l+r+1)>>1;
HalfPlane(a+1,a+p+1)?l=mid:r=mid-1;
}
cout<<l<<endl;
return 0;
}