zoukankan      html  css  js  c++  java
  • PAT1021(dfs 连通分量)

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

    Sample Input 1:

    5
    1 2
    1 3
    1 4
    2 5
    

    Sample Output 1:

    3
    4
    5
    

    Sample Input 2:

    5
    1 3
    1 4
    2 5
    3 4
    

    Sample Output 2:

    Error: 2 components
    题目大意:给你一个图,判断这个图能不能构成树,不能构成输出它的连通分量。能构成树,输出以哪些节点为根树的高度最高。
    首先通过dfs寻找连通分量的个数,如果不为1,输出无法构成树。
    如果为1:两遍dfs找最高的点:
    首先以某个点为根,进行dfs(),得到高度最高的点。再从这些点中随机选择一个点再进行dfs,保存高度最高的点,两次遍历的并集即为答案。
    代码如下:
    #include<iostream>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<set>
    using namespace std;
    vector<int>v[10010];
    bool vis[10010];
    vector<int>temp;
    set<int>s;
    int maxheight;
    void dfs(int n,int depth)
    {
        if(maxheight<depth)
        {
            maxheight=depth;
            temp.clear();
            temp.push_back(n);
        }
        else if(depth==maxheight)
        {
            temp.push_back(n);
        }
        vis[n]=1;
        for(int i=0;i<v[n].size();i++)
        {
            if(!vis[v[n][i]])
            {
                dfs(v[n][i],depth+1);
            }
        }
    }
    int main()
    {
        int n,a,b;
        scanf("%d",&n);
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n-1;i++)
        {
            scanf("%d%d",&a,&b);
            v[a].push_back(b);
            v[b].push_back(a);
        }
        int cnt=0,s1;
        for(int i=1;i<=n;i++)
        {
            maxheight=0;
            if(!vis[i])
            {
                dfs(i,1);
                for(int j=0;j<temp.size();j++)
                {
                    cout<<temp[j]<<endl;
                    s.insert(temp[j]);
                    if(j==0)
                        s1=temp[j];
                }
                cnt++;
            }
        }
        if(cnt!=1)
            printf("Error: %d components
    ",cnt);
        else
        {
            memset(vis,0,sizeof(vis));
            dfs(s1,1);
            for(int i=0;i<temp.size();i++)
                s.insert(temp[i]);
            set<int>:: iterator it;
            it=s.begin();
            for(it;it!=s.end();it++)
                printf("%d
    ",*it);
        }
    }
  • 相关阅读:
    Spring模板方法模式及Callback
    vc新线程、类外控制EDIT控件
    OpenGL绘制框架
    回调函数c++
    matlab练习程序(求灰度图像最大灰度,最小灰度,平均灰度)
    OpenGL绘制函数
    matlab练习程序(图像傅里叶变换,幅度谱,相位谱)
    多项式系数提取算法 c++
    OpenGL绘制复杂图形
    matlab练习程序(图像加噪,各种滤波)
  • 原文地址:https://www.cnblogs.com/flightless/p/8535553.html
Copyright © 2011-2022 走看看