partition numbers的定义
就是将正整数n分为k((1le kle n))个正整数相加,即(n=a_1+a_2+...+a_k)且(a_1le a_2le a_3 ... le a_k),的方案数是a(n)。
计算公式
Partition Numbers - Programming Praxis
代码
这个c++程序只能计算到a(121),要算更大的需要用高精度,因为c++高精度要自己写,我就没写了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define ll long long
using namespace std;
ll dp[200];
ll p(int x){
if(x<0)return 0;
if(x<=1)return 1;
if(dp[x])return dp[x];
int ans=0;
for(int i=1;i<=x;i++){
ans+=(ll)(i%2?1:-1)*(p(x-i*(i*3-1)/2)+p(x-i*(i*3+1)/2));
}
return dp[x]=ans;
}
int main() {
for(int i=1;i<=121;i++)
printf("a(%d)=%lld
",i,p(i));
return 0;
}
输出:
a(1)=1
a(2)=2
a(3)=3
a(4)=5
a(5)=7
a(6)=11
a(7)=15
a(8)=22
a(9)=30
a(10)=42
a(11)=56
a(12)=77
a(13)=101
a(14)=135
a(15)=176
a(16)=231
a(17)=297
a(18)=385
a(19)=490
a(20)=627
...
突然发现自己非常naive。发现HDU上有原题HDU-4651 Partition,就是求分拆数,题目有要求答案取模。
然后用五边形数定理得到递推式来算。代码如下
#include <cstdio>
#define ll long long
using namespace std;
#define N 100001
const ll M = 1e9+7;
int B[N]={1,1,2};
void get(int i){
for(int j=1;;++j)
for(int k=-1;k<2;k+=2){
int w=(3*j*j+k*j)/2;
if(w>i)return;
if(j%2)B[i]=(B[i]+B[i-w])%M;
else B[i]=(B[i]-B[i-w]+M)%M;
}
}
int t,n;
int main() {
for(int i=3;i<N;++i)
get(i);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
printf("%d
",B[n]);
}
return 0;
}