zoukankan      html  css  js  c++  java
  • 第八届蓝桥杯决赛 对局匹配

    标题:对局匹配

    小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
    小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
    现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, ... AN。
    小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?


    输入

    第一行包含两个个整数N和K。
    第二行包含N个整数A1, A2, … AN。
    对于30%的数据,1 <= N <= 10
    对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000


    输出

    一个整数,代表答案。


    样例输入:

    10 0
    1 4 2 8 5 7 1 4 2 8

    样例输出:

    6


    样例输入:

    10 1
    2 1 1 1 1 4 4 3 4 4

    样例输出:

    8


    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 1000ms
    请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。


     思路

      设共有$x$种分数,将其分为$k$组,每个分数满足相邻的分数值相差为$k$。正如样例2中所示,共有4种分数,将其分为1组:{1,2,3,4},这个组中任何相邻的两个分数都不能同时取,因为它们相差$k$,该分组还对应了一个人数分组:{4,1,1,4},要想使得人数尽量多,而且分数不能相差1,那么选择分数分别为{1,4},人数是4+4=8.

      上述是只有一个分组的情况,当有多个分组的时候也是同样的处理方法--尽量选择不相邻且人数最多。对于一个人数分别为${ {a_1},{a_2},...,{a_n}}$的分组,可以利用动态规划算法来选择最多人数,且都不相邻。每个$a_i$只有选择与不选择两种可能,假设$dp(i)$表示前i个人数能获得的最多人数,那么选择第i个人数的话,$dp(i)=dp(i-2)+a_i$,如果不选择第i个人数的话,$dp(i)=dp(i-1)$,这样得到转移方程$dp(i) = max { dp(i - 1),dp(i - 2) + {a_i}} $。

      注意,当k=0的时候特殊处理一下。


     时间复杂度$O(MAX\_SCORE)$

    AC代码(借用@TQCAI的账号已在蓝桥杯官网AC)

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <algorithm>
     4 using namespace std;
     5 #define MAX_SCORE 100000
     6 const int maxn = 100000 + 5;
     7 int cnt[MAX_SCORE+5], val[maxn], dp[maxn];
     8 int n, k;
     9 
    10 int main() {
    11     while(scanf("%d%d", &n, &k) == 2) {
    12         memset(cnt, 0, sizeof(cnt));
    13         int score, ans = 0;
    14         for(int i = 1; i <= n; i++) {
    15             scanf("%d", &score);
    16             cnt[score]++;
    17         }
    18         //特殊处理k=0的情况
    19         if(k == 0) {
    20             for(int i = 0; i <= MAX_SCORE; i++) {
    21                 if(cnt[i]) ans++;
    22             }
    23         } 
    24         else {
    25             for(int i = 0; i < k; i++) {
    26                 int m = 0;
    27                 for(int j = i; j <= MAX_SCORE; j+=k) {
    28                     val[m++] = cnt[j];
    29                 }
    30                 dp[0] = val[0];
    31                 for(int j = 1; j < m; j++) {
    32                     if(j == 1) dp[j] = max(dp[0], val[j]);
    33                     else dp[j] = max(dp[j-2] + val[j], dp[j-1]);
    34                 }
    35                 ans += dp[m-1];
    36             }
    37         }
    38         printf("%d
    ", ans);
    39     }
    40     return 0;
    41 }

    特此感谢@TQCAI


    如有不当之处欢迎指出!

  • 相关阅读:
    Sentry异常捕获平台
    docker部署RabbitMQ(单机)
    Elasticsearch参数调优
    docker 部署Elasticsearch-权限认证(单节点)
    ElementUI 实现el-table 列宽自适应
    vue 弹幕插件
    linux 命令笔记
    swoole安装笔记
    Swoole学习笔记
    VM安装centos8实战
  • 原文地址:https://www.cnblogs.com/flyawayl/p/8305203.html
Copyright © 2011-2022 走看看