zoukankan      html  css  js  c++  java
  • ROS Gazebo使用解析

    Gazebo是ROS中的一个实现物理仿真的工具包,gazebo本身就是一款机器人的仿真软件,基于ODE的物理引擎,可以模拟机器人以及环境中的很多物理特性。

    类似于rviz工具,在gazebo工具中也可以加载机器人模型。
    加载的步骤:

    1. 安装gazebo工具包
    2. 新建工程,将包的路径位置加入到环境变量ROS_PACKAGE_PATH中
    3. 新建.xacro文件并编辑内容
    4. 新建.world文件并编辑内容
    5. 新建.launch文件并编辑内容
    6. 显示模型及其参数

    其中.xacro文件包括机器人模型信息的文件,.world是gazebo环境地图文件,.launch为启动脚本。

    export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/
    

    上述指令可以临时将包的路径位置加入到环境变量ROS_PACKAGE_PATH中

    安装gazebo工具包

    sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-gazebo-roscontrol
    

    安装成功后,运行测试

    rosrun gazebo_ros gazebo

    新建工程,将包的路径位置加入到环境变量ROS_PACKAGE_PATH中

    roscreate-pkg gazebo_test urdf xacro
    
    • 增加环境变量
    export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/your_path/gazebo_test
    

    新建.xacro文件并编辑内容

    • 新建文件夹urdf
    mkdir -p gazebo_test/urdf
    • 在urdf文件夹下编辑robot1.xacro文件如下
    <?xml version="1.0"?>
    
    <robot xmlns:xacro="http://www.ros.org/wiki/xacro" 
        xmlns:sensor="http://playerstage.sourceforge.net/gazebo/xmlschema/#sensor"
            xmlns:controller="http://playerstage.sourceforge.net/gazebo/xmlschema/#controller"
            xmlns:interface="http://playerstage.sourceforge.net/gazebo/xmlschema/#interface"
        name="robot1">
    
        <xacro:property name="length_wheel" value="0.05" />
        <xacro:property name="radius_wheel" value="0.05" />
        <xacro:macro name="default_inertial" params="mass">
                   <inertial>
                           <mass value="${mass}" />
                           <inertia ixx="1.0" ixy="0.0" ixz="0.0"
                                    iyy="1.0" iyz="0.0"
                                    izz="1.0" />
                   </inertial>
        </xacro:macro>
    
        <link name="base_footprint">
            <visual>
                <geometry>
                        <box size="0.001 0.001 0.001"/>
                    </geometry>
                <origin rpy="0 0 0" xyz="0 0 0"/>
            </visual>
            <xacro:default_inertial mass="0.0001"/>
        </link>
    
        <gazebo reference="base_footprint">
            <material>Gazebo/Green</material>
            <turnGravityOff>false</turnGravityOff>
        </gazebo>
    
        <joint name="base_footprint_joint" type="fixed">
            <origin xyz="0 0 0" />
            <parent link="base_footprint" />
            <child link="base_link" />
        </joint>
    
    
        <link name="base_link">
            <visual>
                <geometry>
                        <box size="0.2 .3 .1"/>
                    </geometry>
                <origin rpy="0 0 1.54" xyz="0 0 0.05"/>
                <material name="white">
                    <color rgba="1 1 1 1"/>
                </material>
            </visual>
            <collision>
                <geometry>
                        <box size="0.2 .3 0.1"/>
                </geometry>
            </collision>
            <xacro:default_inertial mass="10"/>
        </link>
    
        <link name="wheel_1">
            <visual>
                    <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                    </geometry>
                <!-- <origin rpy="0 1.5 0" xyz="0.1 0.1 0"/> -->
                <origin rpy="0 0 0" xyz="0 0 0"/>
                <material name="black">
                    <color rgba="0 0 0 1"/>
                </material>
            </visual>
            <collision>
                <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                </geometry>
            </collision>
            <xacro:default_inertial mass="1"/>
        </link>
    
        <link name="wheel_2">
            <visual>
                    <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                    </geometry>
                <!-- <origin rpy="0 1.5 0" xyz="-0.1 0.1 0"/> -->
                <origin rpy="0 0 0" xyz="0 0 0"/>
                <material name="black"/>
            </visual>
            <collision>
                <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                </geometry>
            </collision>
            <xacro:default_inertial mass="1"/>
    
        </link>
    
        <link name="wheel_3">
            <visual>
                    <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                    </geometry>
                <!-- <origin rpy="0 1.5 0" xyz="0.1 -0.1 0"/> -->
    
                <origin rpy="0 0 0" xyz="0 0 0"/>
                <material name="black"/>
            </visual>
            <collision>
                <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                </geometry>
            </collision>
            <xacro:default_inertial mass="1"/>
        </link>
    
        <link name="wheel_4">
            <visual>
                    <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                    </geometry>
            <!--    <origin rpy="0 1.5 0" xyz="-0.1 -0.1 0"/> -->
                <origin rpy="0 0 0" xyz="0 0 0" />
                <material name="black"/>
            </visual>
            <collision>
                <geometry>
                        <cylinder length="${length_wheel}" radius="${radius_wheel}"/>
                </geometry>
            </collision>
            <xacro:default_inertial mass="1"/>
    
        </link>
    
    
    
     <joint name="base_to_wheel1" type="continuous">
       <parent link="base_link"/>
       <child link="wheel_1"/>
       <origin rpy="1.5707 0 0" xyz="0.1 0.15 0"/>
       <axis xyz="0 0 1" />
     </joint>
    
     <joint name="base_to_wheel2" type="continuous">
       <axis xyz="0 0 1" />
       <anchor xyz="0 0 0" />
       <limit effort="100" velocity="100" />
       <parent link="base_link"/>
       <child link="wheel_2"/>
       <origin rpy="1.5707 0 0" xyz="-0.1 0.15 0"/>
    </joint>
    
     <joint name="base_to_wheel3" type="continuous">
       <parent link="base_link"/>
       <axis xyz="0 0 1" />
       <child link="wheel_3"/>
       <origin rpy="1.5707 0 0" xyz="0.1 -0.15 0"/>
     </joint>
    
     <joint name="base_to_wheel4" type="continuous">
       <parent link="base_link"/>
       <axis xyz="0 0 1" />
       <child link="wheel_4"/>
       <origin rpy="1.5707 0 0" xyz="-0.1 -0.15 0"/>
     </joint>
    </robot>
    

    新建.world文件并编辑内容

    • 新建文件夹worlds
    mkdir -p gazebo_test/worlds
    • worlds 文件夹下新建并编辑robot.world文件
    <?xml version="1.0" ?>
    <sdf version="1.4">
      <!-- We use a custom world for the rrbot so that the camera angle is launched correctly -->
    
      <world name="default">
        <include>
          <uri>model://ground_plane</uri>
        </include>
    
        <!-- Global light source -->
        <include>
          <uri>model://sun</uri>
        </include>
    
        <!-- Focus camera on tall pendulum -->
        <gui fullscreen='0'>
          <camera name='user_camera'>
            <pose>4.927360 -4.376610 3.740080 0.000000 0.275643 2.356190</pose>
            <view_controller>orbit</view_controller>
          </camera>
        </gui>
    
      </world>
    </sdf>
    

    world文件的参数就是配置些灯光视角参数

    新建.launch文件并编辑内容

    • 新建lauch文件夹并新建gazebo.lauch如下
    <?xml version="1.0"?>
    <launch>
    
      <!-- these are the arguments you can pass this launch file, for example paused:=true -->
      <arg name="paused" default="true"/>
      <arg name="use_sim_time" default="false"/>
      <arg name="gui" default="true"/>
      <arg name="headless" default="false"/>
      <arg name="debug" default="true"/>
    
      <!-- We resume the logic in empty_world.launch, changing only the name of the world to be launched -->
       <include file="$(find gazebo_ros)/launch/empty_world.launch"> 
         <arg name="world_name" value="$(find gazebo_test)/worlds/robot.world"/>
        <arg name="debug" value="$(arg debug)" />
        <arg name="gui" value="$(arg gui)" />
        <arg name="paused" value="$(arg paused)"/>
        <arg name="use_sim_time" value="$(arg use_sim_time)"/>
        <arg name="headless" value="$(arg headless)"/>
      </include>
    
      <!-- Load the URDF into the ROS Parameter Server -->
      <arg name="model" />
      <param name="robot_description" 
         command="$(find xacro)/xacro.py $(arg model)" />
    
      <!-- Run a python script to the send a service call to gazebo_ros to spawn a URDF robot -->
       <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
        args="-urdf -model robot1 -param robot_description -z 0.05"/> 
    
    </launch>
    

    注意着行代表表示加载的.world文件位置,(find gazebo_test)返回的是包的绝对路径。

    <arg name="world_name" value="$(find gazebo_test)/worlds/robot.world"/>
    

    显示效果

    roslaunch gazebo_test gazebo.launch model:="$(rospack find gazebo_test)/urdf/robot1.xacro"
    //或者使用绝对路径命令
    roslaunch gazebo_test gazebo.launch model:="your_workspace/gazebo_test/urdf/robot1.xacro"
    

      

  • 相关阅读:
    windows下python3.6环境搭建
    接口自动化(2)----如何编写接口自动化用例
    关于接口自动化测试的规则说明
    linux 常用命令 补充
    linux 常用命令
    linux 初识
    java高级教程 JDK代理和CGLIB代理两种方式 账户类
    java高级教程 实例化和非实例化 bean 学生信息
    java高级教程 俩数之和
    C++使用printf输出string类
  • 原文地址:https://www.cnblogs.com/flyinggod/p/12454917.html
Copyright © 2011-2022 走看看