zoukankan      html  css  js  c++  java
  • keras与sklearn的结合使用

    keras与sklearn的结合使用

    Time: 2017-4-14


    引言

    众所周知,keras目前没有提供交叉验证的功能,我们要向使用交叉验证,就需要与sklearn结合。keras也提供了这样的包装接口。keras.wrappers.scikit_learn
    通过这个包里面的KerasClassifier或者KerasRegressor就可以结合。闲话少叙,上代码。

    代码

    
    #!/usr/bin/python
    # encoding: utf-8
    
    """
    @version: 1.0
    @author: Fly Lu
    @license: Apache Licence 
    @contact: luyfuyu@gmail.com
    @site: https://www.flyuuu.cn
    @software: PyCharm
    @file: sklearn_keras.py
    @time: 2017-04-09 9:23
    @description: 描述sklearn使用keras
    """
    from keras.wrappers.scikit_learn import KerasClassifier
    from keras.models import Sequential
    from keras.layers import Dense
    
    from sklearn.cross_validation import StratifiedKFold, cross_val_score
    
    import numpy as np
    
    
    def create_model():
    
        model = Sequential()
        model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
        model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
        model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
        model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    
        return model
    
    
    # 为了让每次的结果都相同
    seed = 7
    np.random.seed(seed)
    
    # 加载数据
    dataset = np.loadtxt('./data/pima-indians-diabetes.csv', delimiter=',')
    X = dataset[:, 0:8]
    Y = dataset[:, 8]
    
    
    model = KerasClassifier(build_fn=create_model, epochs=150, batch_size=10)
    
    kfold = StratifiedKFold(Y, n_folds=10, shuffle=True, random_state=seed)
    
    results = cross_val_score(model, X, Y, cv=kfold)
    
    print(np.average(results))
    
  • 相关阅读:
    电话续
    邀请
    Detecting versions of IE
    Android命令行
    电话
    性格形容词
    .NET 异常处理
    uva 10161 Ant on a Chessboard
    转载 ACM训练计划
    uva 253 Cube painting
  • 原文地址:https://www.cnblogs.com/flyu6/p/7691106.html
Copyright © 2011-2022 走看看