zoukankan      html  css  js  c++  java
  • 求解任意图的最小支配集(Minimun Dominating Set)

    给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合。G的最小控制顶点集合为V的一个子集S∈V;假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V;则最小控制顶点集合S满足约束条件:R中任意一个顶点至少与S的一个顶点直接相连。给定一个图,求出最小控制集。

    控制集定义:

    控制集又称支配集(Minimun Dominating Set),支配集是图G中的顶点集合S ⊆ V,满足对于任何顶点v∈V,要么v∈S,要么v与集合S中至少一个顶点相邻。

    最小控制集:

    对于支配集S0,不存在任何支配集S1,使|S1|<|S0|,则称S0是图G的最小支配集,γ(G)=|S0|称为图G的支配数;

    最小支配集的性质:

    1)求最小支配集问题被证明属于NP完全问题,即对于给定问题域的输入规模,目前尚无足够的手段证明该问题能够被判定在多项式时间内求解。

    2)在含n个点的任意图中,若任意点的度大于等于3,则该图的最小支配集小于等于3n/8。

    3)对于特殊图,如树,可使用贪心或dp的方法解决问题。

    将图论问题转化为数学问题:

    为了方便说明,我们定义图中节点vi的闭邻集为N[vi],若vi为支配点赋值为1,否则赋值为0。根据支配集的定义,我们可以看出,图A中每个点要满足的条件即为N[i]的和大于等于一,也就是说,vi及其临集中至少含有一个支配点,而最小支配集则要求v1…vn的和最小,转化为数学公式,也就是特殊的0-1整数规划问题。

    设计算法:

    输入:一个任意图,格式为,第一行n表示n个节点,接下来任意行,每行两个数,a,b表示a到b有一条无向边。

    输出:最小支配集(节点编号)

    1)遍历邻接表,找出度为0的节点,直接加入支配集,度为1的节点,其相邻节点加入支配集,并加入支配集,度为1的节点记录为精确取值。

    2)将邻接集合按从大到小排序,贪心选择最大的设为支配集,并动态维护邻接集合,直到支配集满足条件,将此支配集设为约束条件。

    3)开始深度搜索,首先对该集合判断是否满足条件,若满足,和当前约束条件比较,若小于当前上界,代替约束条件。

    4)按顺序遍历节点,若已经明确加入支配集则跳过该节点,若已经超过上界,返回,否则分别将该节点置为0和1,跳到步骤4。

    这个算法的朴素时间复杂度是O(2^n)的,理论上一般要优于这个时间复杂度。

    Grandoni算法的时间复杂度为O(2^0.61n),有兴趣的可以去看看论文:路纲, 周明天, 唐勇,等. 任意图支配集精确算法回顾[J]. 计算机学报, 2010, 33(6):1073-1087.

  • 相关阅读:
    爬取校园新闻首页的新闻的详情,使用正则表达式,函数抽离
    网络爬虫基础练习
    Mysql 使用 select into outfile
    Mysql 使用CMD 登陆
    使用Clean() 去掉由函数自动生成的字符串中的双引号
    Get Resultset from Oracle Stored procedure
    获取引用某个主键的所有外键的表
    Entity Framework 丢失数据链接的绑定,在已绑好的EDMX中提示“Choose Your Data Connection”
    添加MySql Metat Database 信息
    at System.Data.EntityClient.EntityConnection.GetFactory(String providerString)
  • 原文地址:https://www.cnblogs.com/flyuz/p/10255934.html
Copyright © 2011-2022 走看看