3GPP定义的LTE网络架构结构变得扁平化,无线RNC/BSC 消失,只有eNodeB。控制面使用MME进行处理,用户面使用SGW和PGW进行处理。相比GSM和UMTS,在逻辑接口上定义了S1/X2逻辑接口。eNB之间底层采用IP传输,在逻辑上通过X2接口互相连接。相邻eNodeB使用X2逻辑接口进行手机切换的控制和用户缓存数据的传送。这样的设计,主要用于支持UE 在整个网络内的移动性,保证用户的无缝切换。
LTE网络的这些特点促使承载网络要有更强的承载能力。相比
Local ip:本地IP连接
Centralized:用于提供移动性、安全性等功能的集中式服务器群
Gateway:网关
Local p2p:本地P2P连接
此外,该体系结构还能实现MME功能的集中部署,MME功能为LTE提供核心网控制。为降低运营成本,可以将MME功能部署在中心站点,这些站点与其它控制节点共址于服务器群中。
LTE-SAE体系结构通过核心网节点池实现高可用性。在实际运行中,如果某个核心网节点发生故障,基站可以连接至节点池中其它任意核心网节点。简而言之,LTE-SAE可提供极高的业务可用性。
运营商在WCDMA/HSPA网络中部署LTE-SAE体系结构和功能的一个有效方法是升级现有的网络节点。这种方法尤其适合早期部署,因为WCDMA/HSPA网络中此时的多余容量可用于支持LTE。例如,运营商可以运行一个WCDMA/HSPA和LTE通用核心网,同时共享可用的控制容量和净荷处理容量,以提升容量的整体利用率,并降低LTE早期部署的运营支出和资本支出。
与此类似,cdma2000运营商也可以通过演进核心网架构实现对SAE的支持。