zoukankan      html  css  js  c++  java
  • 9.2 mnist_with_summaries tensorboard 可视化展示

    tensorboard tensorflow中的可视化组件

    在新版本的tensorflow 中tensorboard已经被整合,无需下载.其执行是利用了一个封装的内置服务器,性能不错.
    我们可以将神经网络运行时的各类数据存储下来进行可视化展示,我首先展示其功能,然后再分解代码.本处例子源自tensorflow的官方源码,如果你需要了解更多,建议直接阅读官方文档

    展示

    最重要的网络结构的展示

    tensorboard的展示

    基本数据的展示

    基本数据的展示

    在本例子中获取了,mean,stddev,max,min等数据.其他部分还包括images,图片本例子中展示的则是,mnist的展示图.

    更多部分建议你运行源码自己体验一下

    CODE

    1. tf.summary使我们需要的 用来想tensorboard写入数据的方法
    2. tf.summary.scalar(‘accuracy’, accuracy) 如代码,scalar可以将数据传入,并在tensorboard中最终以表格的形式展示
    3. tf.summary.image(‘input’, image_shaped_input, NUM_CLASSES) image方法则是前面图片中image模块的数据传入方法

    引用,定义基本参数

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import argparse
    import os
    import sys
    
    import tensorflow as tf
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    FLAGS = None
    # The MNIST dataset has 10 classes, representing the digits 0 through 9.
    NUM_CLASSES = 10
    
    # The MNIST images are always 28x28 pixels.
    IMAGE_SIZE = 28
    IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE

    官方文档的代码写的咋一看非常复杂,不过结构上并不复杂.

    读取数据,定义定义可视化节点

        # Import data
        mnist = input_data.read_data_sets("/home/fonttian/Data/MNIST_data/",
                                          one_hot=True,
                                          fake_data=FLAGS.fake_data)
    
        sess = tf.InteractiveSession()
        # Create a multilayer model.
    
        # Input placeholders
        with tf.name_scope('input'): # 此处定义了input可视化节点,下面则是占位符的声明,在tensorflow中的函数一个共有的name,就是声明的节点的name(名字),该部分可以在上面的图片中展示
            x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, NUM_CLASSES], name='y-input')
    
        with tf.name_scope('input_reshape'):
            image_shaped_input = tf.reshape(x, [-1, IMAGE_SIZE, IMAGE_SIZE, 1])
            tf.summary.image('input', image_shaped_input, NUM_CLASSES)
            # tf.summary 是将数据传入tensorboard的,image将会展示在我们刚刚展示的images部分.
    ``` 抽取代码部分内容,封装为函数
    
    
    
    
    
    <div class="se-preview-section-delimiter"></div>
    
    # We can't initialize these variables to 0 - the network will get stuck.
    def weight_variable(shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        """Create a bias variable with appropriate initialization."""
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    

    “`

        # We can't initialize these variables to 0 - the network will get stuck.
        def weight_variable(shape):
            """Create a weight variable with appropriate initialization."""
            initial = tf.truncated_normal(shape, stddev=0.1)
            return tf.Variable(initial)
    
        def bias_variable(shape):
            """Create a bias variable with appropriate initialization."""
            initial = tf.constant(0.1, shape=shape)
            return tf.Variable(initial)
    
        def variable_summaries(var):
            """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
            with tf.name_scope('summaries'):
                mean = tf.reduce_mean(var)
                tf.summary.scalar('mean', mean)
                with tf.name_scope('stddev'):
                    stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
                tf.summary.scalar('stddev', stddev)
                tf.summary.scalar('max', tf.reduce_max(var))
                tf.summary.scalar('min', tf.reduce_min(var))
                tf.summary.histogram('histogram', var)
        def feed_dict(train):# 需要feed_dict参数
            """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
            if train or FLAGS.fake_data:
                xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
                k = FLAGS.dropout
            else:
                xs, ys = mnist.test.images, mnist.test.labels
                k = 1.0
            return {x: xs, y_: ys, keep_prob: k}

    定义我们的神经网络

        def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
            """Reusable code for making a simple neural net layer.
    
            It does a matrix multiply, bias add, and then uses ReLU to nonlinearize.
            It also sets up name scoping so that the resultant graph is easy to read,
            and adds a number of summary ops.
            """
            # Adding a name scope ensures logical grouping of the layers in the graph.
            with tf.name_scope(layer_name):
                # This Variable will hold the state of the weights for the layer
                with tf.name_scope('weights'):
                    weights = weight_variable([input_dim, output_dim])
                    variable_summaries(weights)
                with tf.name_scope('biases'):
                    biases = bias_variable([output_dim])
                    variable_summaries(biases)
                with tf.name_scope('Wx_plus_b'):
                    preactivate = tf.matmul(input_tensor, weights) + biases
                    tf.summary.histogram('pre_activations', preactivate)
                activations = act(preactivate, name='activation')
                tf.summary.histogram('activations', activations)
                return activations
    
        hidden1 = nn_layer(x, IMAGE_PIXELS, FLAGS.hidden1_units, 'layer1')
    
        with tf.name_scope('dropout'): # 定义dropout的可视化节点,dropout避免过拟合的方法
            keep_prob = tf.placeholder(tf.float32)
            tf.summary.scalar('dropout_keep_probability', keep_prob)
            dropped = tf.nn.dropout(hidden1, keep_prob)
    
        # Do not apply softmax activation yet, see below.
        y = nn_layer(dropped, FLAGS.hidden1_units, NUM_CLASSES, 'layer2', act=tf.identity)

    定义损失函数和优化算法,准确率

        with tf.name_scope('cross_entropy'):
            # The raw formulation of cross-entropy,
            #
            # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
            #                               reduction_indices=[1]))
            #
            # can be numerically unstable.
            #
            # So here we use tf.nn.softmax_cross_entropy_with_logits on the
            # raw outputs of the nn_layer above, and then average across
            # the batch.
            diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
            with tf.name_scope('total'):
                cross_entropy = tf.reduce_mean(diff)
        tf.summary.scalar('cross_entropy', cross_entropy)
    
        with tf.name_scope('train'):
            train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
                cross_entropy)
    
        with tf.name_scope('accuracy'):
            with tf.name_scope('correct_prediction'):
                correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            with tf.name_scope('accuracy'):
                accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy', accuracy)

    写入数据

        # Merge all the summaries and write them out to
        # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
        merged = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
        test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
        tf.global_variables_initializer().run()

    回话设计

        for i in range(FLAGS.max_steps):
            if i % 10 == 0:  # Record summaries and test-set accuracy
                summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
                test_writer.add_summary(summary, i)
                print('Accuracy at step %s: %s' % (i, acc))
            else:  # Record train set summaries, and train
                if i % 100 == 99:  # Record execution stats
                    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                    run_metadata = tf.RunMetadata()
                    summary, _ = sess.run([merged, train_step],
                                          feed_dict=feed_dict(True),
                                          options=run_options,
                                          run_metadata=run_metadata)
                    train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                    train_writer.add_summary(summary, i)
                    print('Adding run metadata for', i)
                else:  # Record a summary
                    summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
                    train_writer.add_summary(summary, i)
        # 停止writer
        train_writer.close()
        test_writer.close()

    执行CODE

    
    def main(_):
        if tf.gfile.Exists(FLAGS.log_dir):
            tf.gfile.DeleteRecursively(FLAGS.log_dir)
        tf.gfile.MakeDirs(FLAGS.log_dir)
        train()
    
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                            default=False,
                            help='If true, uses fake data for unit testing.')
        parser.add_argument('--max_steps', type=int, default=1000,
                            help='Number of steps to run trainer.')
        parser.add_argument('--hidden1_units', type=float, default=500,
                            help='The number of neurons in the first hidden.')
        parser.add_argument('--learning_rate', type=float, default=0.001,
                            help='Initial learning rate')
        parser.add_argument('--dropout', type=float, default=0.9,
                            help='Keep probability for training dropout.')
        parser.add_argument(
            '--data_dir',
            type=str,
            default='/home/fonttian/Data/MNIST_data/',
            help='Directory for storing input data')
        parser.add_argument(
            '--log_dir',
            type=str,
            default='/home/fonttian/Documents/tensorflow/TensorFlow-Basics/tmp/tensorflow/mnist/logs/mnist_with_summaries',
            help='Summaries log directory')
        FLAGS, unparsed = parser.parse_known_args()
        tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
    

    tensorboard的运行

    运行tensorboard
    建议你运行该代码,进行更深入的尝试,

  • 相关阅读:
    Javascript进阶篇——(函数)笔记整理
    Javascript进阶篇——(流程控制语句)笔记整理
    Javascript进阶篇——(数组)笔记整理
    Javascript进阶篇——(JS基础语法)笔记整理
    Javascript基础学习笔记
    wamp安装
    JavaScript语法作业
    0721JS
    css复习内容
    盒子模型
  • 原文地址:https://www.cnblogs.com/fonttian/p/9162761.html
Copyright © 2011-2022 走看看