zoukankan      html  css  js  c++  java
  • 树链剖分——边上权值和

    Queries On Tree

    Problem code: TAQTREE

    All submissions for this problem are available.

    Read problems statements in Mandarin Chinese and Russian.

    You are given a tree of N nodes numbered from 1 to N.
    The ith edge connecting node ui and vi has a weight of wi.

    Your target is to handle the queries of the following two types:

    • "1 i c" : Update the weight of ith edge with the new weight c.
      (1 represents the query type).
    • "2 u v" : Find the length of the path from node u to v. (2 represents the query type).

    Input

    • The first line contains a single integer N.
    • Each of the next N - 1 lines contains three integers u v w, representing an edge
      between u and v with the weight of w.
    • The next line contains a single integer Q representing the number of queries
    • Each of the next Q lines contains three integers representing a query as described above.

    Output

    • For each query of type 2, output the answer in a single line.

    Constraints

    All test:

    • 1i < N
    • 1u, vN; uv
    • 1w, c104

    40 points:

    • 1N, Q103

    60 points:

    • 1N, Q105

    Example

    Input: 5 1 2 2 2 3 4 4 2 3 5 4 1 3 2 5 3 1 3 1 2 5 3  Output: 8 6  

    Explanation

    The path from 5 to 3 is 5 -> 4 -> 2 -> 3. Initially this path has the length of 1 + 3 + 4 = 8.
    After the weight of the edge connect 4 and 2 was changed to 1, the new length of the path is 1 + 1 + 4 = 6.

    比较基础的树链剖分题,算边上的权值和,单边修改

      1 #include<bits/stdc++.h>
      2 
      3 using namespace std;
      4 typedef long long ll;
      5 
      6 #define N 223456
      7 struct node
      8 {
      9     int v,next;
     10 }e[N<<2];
     11 int head[N],tot,top[N],fa[N],deep[N],num[N];
     12 int p[N],fp[N],son[N];
     13 int pos;
     14 
     15 void init()
     16 {
     17     tot=0;
     18     memset(head,-1,sizeof(head));
     19     pos=0;
     20     memset(son,-1,sizeof(son));
     21 }
     22 void add(int u,int v)
     23 {
     24     e[tot].v=v;
     25     e[tot].next=head[u];
     26     head[u]=tot++;
     27 }
     28 void dfs1(int u,int pre,int d)
     29 {
     30     deep[u]=d;
     31     fa[u]=pre;
     32     num[u]=1;
     33     for (int i=head[u];i!=-1;i=e[i].next)
     34     {
     35         int v=e[i].v;
     36         if (v!=pre)
     37         {
     38             dfs1(v,u,d+1);
     39             num[u]+=num[v];
     40             if (son[u]==-1||num[v]>num[son[u]]) son[u]=v;
     41         }
     42     }
     43 }
     44 void getpos(int u,int sp)
     45 {
     46     top[u]=sp;
     47     p[u]=pos++;
     48     fp[p[u]]=u;
     49     if (son[u]==-1return;
     50     getpos(son[u],sp);
     51     for (int i=head[u];i!=-1;i=e[i].next)
     52     {
     53         int v=e[i].v;
     54         if (v!=son[u]&&v!=fa[u])
     55             getpos(v,v);
     56     }
     57 }
     58 
     59 struct nod
     60 {
     61     int l,r;
     62     ll sum;
     63 }tree[N<<4];
     64 
     65 void build(int rt,int l,int r)
     66 {
     67     tree[rt].l=l;
     68     tree[rt].r=r;
     69     tree[rt].sum=0;
     70     if (l==r) return;
     71     int mid=(l+r)/2;
     72     build(rt<<1,l,mid);
     73     build(rt<<1|1,mid+1,r);
     74 }
     75 
     76 void pushup(int rt)
     77 {
     78     tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum;
     79 }
     80 void update(int rt,int k,int val)
     81 {
     82     if (tree[rt].l==k&&tree[rt].r==k)
     83     {
     84         tree[rt].sum=val;
     85         return;
     86     }
     87     int mid=(tree[rt].l+tree[rt].r)/2;
     88     if (k<=mid) update(rt<<1,k,val);
     89     else update(rt<<1|1,k,val);
     90     pushup(rt);
     91 }
     92 
     93 ll query(int rt,int l,int r)
     94 {
     95     if (tree[rt].l==l&&tree[rt].r==r) return tree[rt].sum;
     96 
     97     int mid=(tree[rt].l+tree[rt].r)/2;
     98     if (r<=mid) return query(rt<<1,l,r);
     99     else if (l>mid) return query(rt<<1|1,l,r);
    100     else return query(rt<<1,l,mid)+query(rt<<1|1,mid+1,r);
    101 }
    102 
    103 ll find(int u,int v)
    104 {
    105     int f1=top[u],f2=top[v];
    106     ll tmp=0;
    107     while (f1!=f2)
    108     {
    109         if (deep[f1]<deep[f2])
    110         {
    111             swap(f1,f2);
    112             swap(u,v);
    113         }
    114         tmp+=query(1,p[f1],p[u]);
    115         u=fa[f1];
    116         f1=top[u];
    117     }
    118     if (u==v) return tmp;
    119     if (deep[u]>deep[v]) swap(u,v);
    120     return tmp+query(1,p[son[u]],p[v]);
    121 }
    122 
    123 int x[N],y[N],z[N];
    124 int main()
    125 {
    126     int n;
    127     scanf("%d",&n);
    128     init();
    129     for (int i=1;i<n;i++)
    130     {
    131         scanf("%d%d%d",&x[i],&y[i],&z[i]);
    132         add(x[i],y[i]);
    133         add(y[i],x[i]);
    134     }
    135     dfs1(1,0,0);
    136     getpos(1,1);
    137     build(1,0,pos-1);
    138     for (int i=1;i<n;i++)
    139     {
    140         if (deep[x[i]]>deep[y[i]])
    141             swap(x[i],y[i]);
    142         update(1,p[y[i]],z[i]);
    143     }
    144     int Q;
    145     scanf("%d",&Q);
    146     while (Q--)
    147     {
    148         int ty,a,b;
    149         scanf("%d%d%d",&ty,&a,&b);
    150         if (ty==1) update(1,p[y[a]],b);
    151         else printf("%lld ",find(a,b));
    152     }
    153 
    154     return 0;
    155 }
  • 相关阅读:
    更新整理本人所属博客文章的示例代码和工具组件(Java 和 C++)
    【端午呈献】通用高性能 Windows Socket 组件 HPSocket v2.2.1 悄然发布
    REST手记(一):对URI隧道技术以及CRUD操作的理解
    Jquery+JSON消费REST WCF4.0 服务(带源码)
    对REST架构 风格下WCF的一点补充
    REST与SOA两种架构下WCF的异同比较(含源码)
    REST笔记(三):一种标准的超媒体格式:Atom
    REST WCF 使用Stream进行Server与Client交互
    REST笔记(六)通过缓存架构可伸缩性与容错性的Service
    深入理解WCF系统体系(之二:WCF客户端如何构建?(上))
  • 原文地址:https://www.cnblogs.com/forgot93/p/4830487.html
Copyright © 2011-2022 走看看