题目
题目大意
给定正整数(N)和(M), 统计(2)和(N!)之间有多少个整数(x)满足: (x)的所有素因子都大于(M)((2 ≤ N ≤ 10^7), (1 ≤ M ≤ N), (N - M ≤ 10^5))。输出答案除以(100000007)的余数。例如, (N = 100), (M = 10)时的答案为(43274465)。
题解
因为(M ≤ N), 所以(N!)是(M!)的整数倍。所有素因子都大于(M)等价于和(M!)互质。根据最大公约数的性质, 对于(k > M!), (k)与(M!)互质当且仅当(k mod M!)与(M!)互质。这样就只需要求出不超过(M!)且与(M!)互质的正整数个数, 再乘以(frac{N!}{M!})即可。
根据欧拉函数的公式:
[phi(n) = n(1 - frac{1}{p_1})(1 - frac{1}{p_2})cdots(1 - frac{1}{p_k})
]
如果(n)不是质数, 那么(n!)与((n - 1)!)的质因子集合相同, 因此(phifac(n) = n phifac(n - 1)); 如果(n)是质数, 那么还会多一项((1 - frac{1}{n})), 即(phifac(n) = (n - 1) phifac(n - 1))。
代码
#include <cstdio>
#include <cstring>
const long long kMod(100000007);
long long phifac[10000010] = {0, 1, 1};
bool mark[10000010];
long long n, m;
long long ans;
int main(int argc, char const *argv[]) {
memset(mark, true, sizeof(mark));
mark[0] = mark[1] = false;
for (register int i(2); i <= 10000000; ++i) {
if (mark[i]) {
for (register int j(2); i * j <= 10000000; ++j) {
mark[i * j] = false;
}
}
}
for (register long long i(3); i <= 10000000; ++i) {
phifac[i] = phifac[i - 1] * (mark[i] ? i - 1 : i) % kMod;
}
while (~scanf("%lld %lld", &n, &m) && (n || m)) {
ans = phifac[m];
for (register long long i(m + 1); i <= n; ++i) ans = ans * i % kMod;
printf("%lld
", (ans - 1 + kMod) % kMod);
}
return 0;
}