zoukankan      html  css  js  c++  java
  • Discovering Gold

    Discovering Gold
    You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.

    Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.

    Output

    For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.

    Sample Input
    3
    1
    101
    2
    10 3
    3
    3 6 9
    
    Sample Output
    Case 1: 101.0000000000
    Case 2: 13.000
    Case 3: 15
    

    最后期望就是到达每点的概率*每点的值,如果是最后几个点,比如倒数第4个点,他后面只有三个点,改点到达后面点的概率是1/3

    #include<bits/stdc++.h>
    #include<stdio.h>
    #include<algorithm>
    #include<ctype.h>
    using namespace std;
    #define Init(a,v) memset(a,v,sizeof(a))
    #define Tie ios::sync_with_stdio(0);cin.tie(0)
    typedef long long ll;
    const ll MAXN=1e1+8,inf=0x3f3f3f3f,mod=1e9+7;
    int a[MAXN];
    double p[MAXN],ans;
    int main() {
        freopen("in","r",stdin);
        Tie;
        int t,cas=1;
        cin>>t;
        while(t--){
            int n;
            cin>>n;
            for(int i=1;i<=n;++i)cin>>a[i];
            p[1]=1;
            for(int i=2;i<=n;++i)p[i]=0;
            ans=0;
            for(int i=1;i<=n;++i){
                int k=min(6,n-i);
                for(int j=i+1;j<=n&&j<=i+6;++j){
                    p[j]+=p[i]/k;//j点可以由i点到达。
                }
                ans+=p[i]*a[i];
            }
            printf("Case %d: %lf
    ",cas++,ans);
        }
        return 0;
    }
    
  • 相关阅读:
    01.html5+phonegap跨平台移动应用开发
    10个CSS简写/优化技巧
    JS高级学习历程-17
    JS高级学习历程-16
    算法详解之Tarjan
    分层图详解
    洛谷 题解 P1196 【[NOI2002]银河英雄传说】
    洛谷 题解 P1220 【关路灯 】
    洛谷 题解 P1352 【没有上司的舞会】
    二维前缀和详解
  • 原文地址:https://www.cnblogs.com/foursmonth/p/14155979.html
Copyright © 2011-2022 走看看