是一道floyd变形的题目。题目让确定有几个人的位置是确定的,如果一个点有x个点能到达此点,从该点出发能到达y个点,若x+y=n-1,则该点的位置是确定的。用floyd算发出每两个点之间的距离,最后统计时,若dis[a][b]之间无路且dis[b][a]之间无路,则该点位置不能确定。最后用点个数减去不能确定点的个数即可。题目:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4813 | Accepted: 2567 |
Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5 4 3 4 2 3 2 1 2 2 5
Sample Output
2ac代码:
- #include <iostream>
- #include <string.h>
- #include <cstdio>
- using namespace std;
- #define MAX 0x7fffffff
- const int N=110;
- int dis[N][N];
- int n,m;
- void floyd(){
- for(int k=1;k<=n;++k){
- for(int i=1;i<=n;++i){
- for(int j=1;j<=n;++j){
- if(dis[i][k]!=MAX&&dis[k][j]!=MAX&&dis[i][j]>dis[i][k]+dis[k][j]){
- dis[i][j]=dis[i][k]+dis[k][j];
- }
- }
- }
- }
- }
- int main(){
- //freopen("1.txt","r",stdin);
- while(~scanf("%d%d",&n,&m)){
- for(int i=1;i<=n;++i){
- for(int j=1;j<=n;++j)
- dis[i][j]=MAX;
- }
- int x,y;
- while(m--){
- scanf("%d%d",&x,&y);
- dis[x][y]=1;
- }
- floyd();
- int ans=0;
- for(int i=1;i<=n;++i){
- for(int j=1;j<=n;++j){
- if(j==i)continue;
- if(dis[i][j]==MAX&&dis[j][i]==MAX)
- {ans++;break;}
- }
- }
- printf("%d ",n-ans);
- }
- return 0;
- }
版权声明:本文为博主原创文章,未经博主允许不得转载。