zoukankan      html  css  js  c++  java
  • 【NLP】MT中BLEU评分机制

    参考博客:https://blog.csdn.net/guolindonggld/article/details/56966200

    原著论文:http://www.aclweb.org/anthology/P02-1040.pdf

    BLEU是2002年IBM研究人员提出的一种自动评价MT翻译质量的方法。其本质是比对MT给出的结果(称为候选翻译,candidate)和事前知道的比较好的若干个翻译样本(称为参考翻译,reference,通常是人工翻译给出的数据),比较两者之间的相似度。

    在计算这个相似度的时候,最基本的策略是从candidate中逐步取出一些内容,考察这些内容,去检查各个参考翻译中是否存在相同的内容。如果相同的内容出现频率越高,说明candidate的翻译越准确。将这个频率量化为某个指标P (这个指标是针对某个内容子集而言的)。当我们把candidate中所有信息都考察完毕,没有漏掉的东西之后,加和所有的指标P,所得到的分数越高,自然翻译就是越准确的。

    那么具体取出的是什么内容? 很自然想到的是单个单个的词。不过单个词的抽出内容(所谓的1-gram词模型)的一个问题是常用词陷阱。比如candidate中含有大量的the,in这类常用词但是翻译质量并不高时,由于是常用词,必然也在所有的reference中也都有出现,反而会导致分数比较高。为了解决这个问题,我们可以做两点改进:

    1. 将1-gram升高为N-gram,加强匹配的严格性。不过直接将此模型提升到N-gram,可能会导致太严格,所以可以折中,以一定的权重将1-gram,2-gram... N-gram各个模型得到的值做一个平均作为最终的分数。这个平均一般是加权几何平均。

    2. 另一个想法,则是对量化指标这个过程做些调整。之前没有具体说明量化指标的过程是怎么做的,不过可以感到,需要一个机制来统合而不是那么傻乎乎地去计算频率。比如某个词或词组在candidate中出现了好几次该怎么算,不同reference中出现次数又不相同又该怎么办

    综合上述考虑,BLEU给出的PN值的计算公式是min( candidate.count(w), max(reference1.count(w), reference2.count(w)...   referenceN.count(w) ) ) / candidate.count(w) 。也就是说,针对某个从candidate中选出的词或词组w,首先求出各个reference中其出现次数的最大值,然后取这个值与candidate中w出现次数两者中较小的值。然后将这个值除以candidate中w出现次数。首先可以确定,这个值肯定是小于等于1的。

    其次,上面这个公式是针对一个要素w的情况,实际上翻译结果中有w1,w2...wn那么多,那么这些结果的所有分子加起来除以所有分母加起来,得到的就是PN了。

    当然不要忘了,之前我们说可以将1,2...N-gram的结果都要拿来用。另外对加权几何平均进行一个对数化处理,于是我们就得到了

    这样一个公式了。

    由于最外面套了一个exp,而exp里面的玩意儿必然小于0,所以最终产出肯定是一个小于1的正值。

    这样看似不错了。不过还有BLEU的第二个陷阱需要解决,即短句陷阱。比如中文中有一句“猫XXXX”的句子,那么英语翻译时几乎必然会出现the cat这个词组。如果MT的翻译结果就是“the cat”,此时candidate长度就只有2,因此也就只能做到1-gram和2-gram的评估。然而不合理的地方在于,即便是漏译了很多内容,在评估模型看来,P1和P2还是有可能会比较高的。因为所有reference中都几乎必然出现the cat这个词组。

    换言之,目前模型对于短翻译句的评估还不是很合理,原因是当candidate长度过短时,我们只能做到有限的N-gram模型就不得不作罢。

    为了修正这个错误,BLEU提出的解决方案是引入BP(Brevity Penalty)即过短惩罚。相比于上面复杂的计算,BP的计算就要简单很多了,首先从reference中找出长度与candidate最为相近的一条。如果此条长度大于candidate长度,那么定义BP为exp(1 - r/c)。反之,如果candidate长度大于最接近的reference长度,那么直接定义BP为1。

    将BP乘以上面算式算出的指标,便可得到一个大于0小于1的BLEU分数了。

    总的公式:

    一般MT研究中,BLEU作为标杆,有比较重要的意义。各种MT模型的目标都是为了让BLEU上升。

  • 相关阅读:
    Minimum Depth of Binary Tree leetcode java
    Maximum Depth of Binary Tree leetcode java
    Symmetric Tree leetcode java
    Same Tree leetcode java
    Binary Tree Postorder Traversal leetcode java
    Binary Tree Preorder Traversal leetcode java
    Binary Tree Inorder Traversal leetcode java
    Combinations leetcode java
    一键清除Centos iptables 防火墙所有规则
    阿里云centos7.7x64安装open,并配置ip转发和nat伪装
  • 原文地址:https://www.cnblogs.com/franknihao/p/9718701.html
Copyright © 2011-2022 走看看