zoukankan      html  css  js  c++  java
  • uva12486 Space Elevator(数位dp)

    转载请注明出处: http://www.cnblogs.com/fraud/           ——by fraud

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=279&page=show_problem&problem=3930

     

    题意:问第n个各个数位上不出现连续的13和4的数是多少?从1开始算,n<=10^18

    莫名奇妙地写跪了,重写一发就过了、、、

    可以比较容易的得出小于等于x的满足那些要求的数有多少个,然后根据这个二分。直接二分答案。

    注意需要用unsigned long long

    /**
     * code generated by JHelper
     * More info: https://github.com/AlexeyDmitriev/JHelper
     * @author xyiyy @https://github.com/xyiyy
     */
    
    #include <iostream>
    #include <fstream>
    
    //#####################
    //Author:fraud
    //Blog: http://www.cnblogs.com/fraud/
    //#####################
    //#pragma comment(linker, "/STACK:102400000,102400000")
    #include <iostream>
    #include <sstream>
    #include <ios>
    #include <iomanip>
    #include <functional>
    #include <algorithm>
    #include <vector>
    #include <string>
    #include <list>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <set>
    #include <map>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <cstring>
    #include <climits>
    #include <cctype>
    
    using namespace std;
    #define rep(X, N) for(int X=0;X<N;X++)
    #define dep(X, R, L) for(int X=R;X>=L;X--)
    typedef unsigned long long ull;
    
    typedef unsigned long long ull;
    ull dp[30][10];
    int d[30];
    
    class TaskE {
    public:
        void solve(std::istream &in, std::ostream &out) {
            //bign n;
    
            rep(i, 30)
                rep(j, 10)dp[i][j] = 0;
            run();
            ull n;
            while (in >> n) {
                ull ans = 1;
                ull l = 1;
                ull r = -1;
                while (l <= r) {
                    int f = 0;
                    if ((l & 1) && (r & 1))f++;
                    ull mid = (r >> 1) + (l >> 1) + f;
                    if (gao(mid) <= n) {
                        ans = mid;
                        l = mid + 1;
                    } else {
                        r = mid - 1;
                    }
                }
                out << ans << endl;
            }
        }
    
        ull gao(ull n) {
            ull ans = 0;
            int len = 0;
            while (n) {
                d[++len] = n % 10;
                n /= 10;
            }
            d[len + 1] = 0;
            dep(i, len, 1) {
                rep(j, d[i]) {
                    if (d[i + 1] != 1 || j != 3) {
                        ans += dp[i][j];
                    }
                }
                if (d[i] == 4 || (d[i + 1] == 1 && d[i] == 3))break;
            }
            return ans;
        }
    
        void run() {
            dp[0][0] = 1;
            for (int i = 1; i <= 20; i++) {
                for (int j = 0; j <= 9; j++) {
                    for (int k = 0; k <= 9; k++) {
                        if (j != 4 && !(j == 1 && k == 3)) {
                            dp[i][j] += dp[i - 1][k];
                        }
                    }
                }
            }
        }
    };
    
    int main() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(0);
        TaskE solver;
        std::istream &in(std::cin);
        std::ostream &out(std::cout);
        solver.solve(in, out);
        return 0;
    }
  • 相关阅读:
    Floyd判圈算法 Floyd Cycle Detection Algorithm
    最优化问题 Optimization Problems & 动态规划 Dynamic Programming
    自平衡二叉搜索树
    树 & 二叉树
    数根
    二叉搜索树BST
    K-Means & Sequential Leader Clustering
    KMP算法
    递归问题的时间复杂度分析
    人工神经网络 Artificial Neural Network
  • 原文地址:https://www.cnblogs.com/fraud/p/4731242.html
Copyright © 2011-2022 走看看