zoukankan      html  css  js  c++  java
  • [Leetcode 52] 39 Combination Sum

    Problem:

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

    The same repeated number may be chosen from C unlimited number of times.

    Note:

    • All numbers (including target) will be positive integers.
    • Elements in a combination (a1a2, � , ak) must be in non-descending order. (ie, a1 ? a2 ? � ? ak).
    • The solution set must not contain duplicate combinations.

    For example, given candidate set 2,3,6,7 and target 7
    A solution set is: 
    [7] 
    [2, 2, 3]

    Analysis:

    It's also a backtracking problem. One thing need to be noticed is that [1, 2, 1] and [1, 1, 2] are considered the same sum, so they can't be in the result. Further more, since final results are required to be sorted, [1, 2, 1] is even an invalid result. The solution to this problem is that make sure the given array sorted and bc won't access any element before the element has been accessed. That's why we add pos into the bc function.

    Code:

     1 class Solution {
     2 public:
     3     vector<vector<int> > res;
     4     int tar;
     5 
     6     vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
     7         // Start typing your C/C++ solution below
     8         // DO NOT write int main() function
     9         res.clear();
    10         if (candidates.size() == 0)
    11             return res;
    12             
    13         vector<int> path;
    14         tar = target;
    15         sort(candidates.begin(), candidates.end());
    16         bc(0, path, 0, candidates);
    17         
    18         return res;
    19     }
    20     
    21     
    22     void bc(int sum, vector<int> path, int pos, vector<int> &cand) {
    23         if (sum > tar)
    24             return ;
    25             
    26         if (sum == tar) {
    27             res.push_back(path);
    28         }
    29         
    30         for (int i=pos; i<cand.size(); i++) {
    31             path.push_back(cand[i]);
    32             bc(sum+cand[i], path, i, cand);
    33             path.pop_back();
    34         }
    35         
    36         return ;
    37     }
    38 };
    View Code
  • 相关阅读:
    Developing
    debian 中的jdk
    openwrt手册编译
    下载openwrt源码
    progit 学习笔记-- 1 第一章 第二章
    nw335 debian sid x86-64 -- 6 第三方驱动
    nw335 debian sid x86-64 -- 5 使用xp的驱动
    nw335 debian sid x86-64 -- 4 realtek 提供的官方驱动
    JavaScript中介者模式
    javascript职责链模式
  • 原文地址:https://www.cnblogs.com/freeneng/p/3099595.html
Copyright © 2011-2022 走看看