zoukankan      html  css  js  c++  java
  • [Leetcode 65] 120 Triangle

    Problem:

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note:
    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Analysis:

    Basically, this is a simple dynamic programming problem. Start from the first level, at level i, computing the possible min length of each position at level i give the i-1 level. And after computing the last level, use find_min funnction to get the minimum value of the path. Besides, this solution is an online version. It can always give the current solution.

    This time complexity is O(n) and the space complecity is O(n).

    Code:

     1 class Solution {
     2 public:
     3     int minimumTotal(vector<vector<int> > &triangle) {
     4         // Start typing your C/C++ solution below
     5         // DO NOT write int main() function
     6         for (int i=1; i<triangle.size(); i++) {
     7         
     8             for (int j=0; j<i+1; j++) {
     9                 if (j == 0) //first in a row
    10                     triangle[i][0] += triangle[i-1][0]; 
    11                 else if (j == i) //last in a row
    12                     triangle[i][i] += triangle[i-1][i-1];
    13                 else // two choice & get smaller
    14                     triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]);
    15             }
    16         }
    17         
    18         return find_min(triangle[triangle.size()-1]);
    19     }
    20     
    21     int min(int a, int b) {
    22         return (a<b)? a : b;
    23     }
    24     
    25     int find_min(vector<int> v) {
    26         int min = v[0];
    27         
    28         for (int i=1; i<v.size(); i++) {
    29             if (v[i] < min)
    30                 min = v[i];
    31         }
    32         
    33         return min;
    34     }
    View Code
  • 相关阅读:
    求解一元二次方程
    常用电脑软件
    c语言的布尔量
    unsigned int数据类型最大数
    int数据类型的最大数
    习题6-8 统计一行文本的单词个数
    习题6-6 使用函数输出一个整数的逆序数
    习题6-5 使用函数验证哥德巴赫猜想
    习题6-4 使用函数输出指定范围内的Fibonacci数
    C#委托、泛型委托
  • 原文地址:https://www.cnblogs.com/freeneng/p/3192516.html
Copyright © 2011-2022 走看看