zoukankan      html  css  js  c++  java
  • [Leetcode 79] 106 Construct Binary Tree from Inorder and Postorder Traversal

    Problem:

    Given inorder and postorder traversal of a tree, construct the binary tree.

    Note:
    You may assume that duplicates do not exist in the tree.

    Analysis:

    This problem is the same as the former one of reconstructing the binary tree with inorder and preorder traversal array.

    The only difference is that now the root is always at the end of the given array.

    A comparison of the two problem's solving is as follows:

    Post & In:

    t->left = build(in, is, idx-1, post, ps, ps+idx-is-1);
    t->right = build(in, idx+1, ie, post, ps+idx-is, pe-1);

    Pre & In:

    t->left = fun(in, is, idx-1, pre, ps+1, ps+idx-is);

    t->right = fun(in, idx+1, ie, pre, ps+idx-is+1, pe);

    We can see that the sub-array for in is the same of the two solution. The difference comes from the latter part. 

    Code:

     1 /**
     2  * Definition for binary tree
     3  * struct TreeNode {
     4  *     int val;
     5  *     TreeNode *left;
     6  *     TreeNode *right;
     7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     8  * };
     9  */
    10 class Solution {
    11 public:
    12     TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
    13         // Start typing your C/C++ solution below
    14         // DO NOT write int main() function
    15         return build(inorder, 0, inorder.size()-1, 
    16                     postorder, 0, postorder.size()-1);
    17     }
    18     
    19 private:
    20     TreeNode *build(vector<int> &in, int is, int ie,
    21                     vector<int> &post, int ps, int pe) {
    22         if (is > is || ps > pe)
    23             return NULL;
    24         
    25         TreeNode *t = new TreeNode(post[pe]);     
    26         int idx = search(in, is, ie, post[pe]);
    27 
    28         t->left = build(in, is, idx-1, post, ps, ps+idx-is-1);
    29         t->right = build(in, idx+1, ie, post, ps+idx-is, pe-1);
    30 
    31         return t;
    32     }
    33     
    34     int search(vector<int> &in, int s, int e, int v) {
    35         int idx;
    36         for (idx=s; idx<=e; idx++)
    37             if (in[idx] == v)
    38                 break;
    39                 
    40         return idx;
    41     }
    42 };
    View Code
  • 相关阅读:
    欧拉函数
    新博客地址
    socket编程
    文件操作
    python安装扩展”unable to find vcvarsall.bat“的解决办法
    PYTHON以及插件安装
    梯式结构
    PHPSTORM配置
    CSRF攻击
    js的一些奇葩用法
  • 原文地址:https://www.cnblogs.com/freeneng/p/3207829.html
Copyright © 2011-2022 走看看