zoukankan      html  css  js  c++  java
  • [Leetcode 79] 106 Construct Binary Tree from Inorder and Postorder Traversal

    Problem:

    Given inorder and postorder traversal of a tree, construct the binary tree.

    Note:
    You may assume that duplicates do not exist in the tree.

    Analysis:

    This problem is the same as the former one of reconstructing the binary tree with inorder and preorder traversal array.

    The only difference is that now the root is always at the end of the given array.

    A comparison of the two problem's solving is as follows:

    Post & In:

    t->left = build(in, is, idx-1, post, ps, ps+idx-is-1);
    t->right = build(in, idx+1, ie, post, ps+idx-is, pe-1);

    Pre & In:

    t->left = fun(in, is, idx-1, pre, ps+1, ps+idx-is);

    t->right = fun(in, idx+1, ie, pre, ps+idx-is+1, pe);

    We can see that the sub-array for in is the same of the two solution. The difference comes from the latter part. 

    Code:

     1 /**
     2  * Definition for binary tree
     3  * struct TreeNode {
     4  *     int val;
     5  *     TreeNode *left;
     6  *     TreeNode *right;
     7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     8  * };
     9  */
    10 class Solution {
    11 public:
    12     TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
    13         // Start typing your C/C++ solution below
    14         // DO NOT write int main() function
    15         return build(inorder, 0, inorder.size()-1, 
    16                     postorder, 0, postorder.size()-1);
    17     }
    18     
    19 private:
    20     TreeNode *build(vector<int> &in, int is, int ie,
    21                     vector<int> &post, int ps, int pe) {
    22         if (is > is || ps > pe)
    23             return NULL;
    24         
    25         TreeNode *t = new TreeNode(post[pe]);     
    26         int idx = search(in, is, ie, post[pe]);
    27 
    28         t->left = build(in, is, idx-1, post, ps, ps+idx-is-1);
    29         t->right = build(in, idx+1, ie, post, ps+idx-is, pe-1);
    30 
    31         return t;
    32     }
    33     
    34     int search(vector<int> &in, int s, int e, int v) {
    35         int idx;
    36         for (idx=s; idx<=e; idx++)
    37             if (in[idx] == v)
    38                 break;
    39                 
    40         return idx;
    41     }
    42 };
    View Code
  • 相关阅读:
    C#委托
    资源推荐 五个常用MySQL图形化管理工具
    C#数组
    虚方法与多态
    How to connect to MySQL database from Visual Studio VS2010 – problems with NET connectors
    2021秋软工实践第二次结对编程作业
    2021秋软工实践第一次个人编程作业
    低维数据可视化
    2021秋季软件工程实践总结
    2021秋软工实践第一次结对编程作业
  • 原文地址:https://www.cnblogs.com/freeneng/p/3207829.html
Copyright © 2011-2022 走看看