深度学习是机器学习理论中的一个新的研究领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
1、图像理解:
ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.
Learning Hierarchical Features for Scene Labeling, Clement Farabet, Camille Couprie, Laurent Najman and Yann LeCun, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.
Learning Convolutional Feature Hierachies for Visual Recognition, Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël Mathieu and Yann LeCun, Advances in Neural Information Processing Systems (NIPS 2010), 23, 2010.
2、语音识别:
微软研究人员通过与hintion合作,首先将RBM和DBN引入到语音识别声学模型训练中,并且在大词汇量语音识别系统中获得巨大成功,使得语音识别的错误率相对减低30%。但是,DNN还没有有效的并行快速算法,很多研究机构都是在利用大规模数据语料通过GPU平台提高DNN声学模型的训练效率。
在国际上,IBM、google等公司都快速进行了DNN语音识别的研究,并且速度飞快。
国内方面,科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。
3、自然语言处理
某些机构在开始开展研究,深度学习在自然语言处理方面在未来几年有望产生系统性的突破!